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Abstract  
A tunable label-free refractive index biosensor based on 

plasmonic planar split-ring resonators is proposed. The 

effects of Fano resonances are studied to harness the 

transmission spectra in near-infrared region. In the structure, 

dual hexagonal ring resonators are utilized to realize the 

Fano resonances with the advantages of high sensitivity, 

large figure of merit, narrow full wave at half-maximum 

(FWHM), and extremely large Q-factor. Analytical and 

numerical outcomes display that, by slight variation of the 

refractive index and geometrical modes resonances can be 

manipulated. A high sensitivity of 1160 nm/RIU with a FoM 

as large as 33 is achieved. Besides, the proposed biosensor 

shows a relatively narrow FWHM of 50 nm, which 

introduces a high Q-factor of 31. Such this moderately high 

Q-factor ensures that the structure exhibits extreme low 

resonance losses that can be advantageous for high 

resolution detections with acceptable accuracy. Nano Fano 

resonance sensing is a technique used in nanophotonics for 

highly sensitive detection of bioanalytes. It leverages the 

Fano resonance effect, which arises from interference 

between a discrete state and a broadband continuum of 

states. This can lead to sharp asymmetric peaks in the 

absorption or scattering spectrum. 
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1. INTRODUCTION  

Numerous studies have explored various advancements in different types of 

biosensors, including unstable wave fluorescence sensors, photonic crystals, and 

surface plasmon resonance (SPR) sensors, with some of these studies focusing 

on specific applications. Optical biosensors have been highly welcomed by 

scientists in the last few years due to their fast response, small dimensions, low 

cost, timely detection ability, and ability to adapt to biological analytes with 

excellent s (sensitivity) and QF (quality factor). Taken in optical biosensors, a 

converter that converts the light change received from the source into 

measurable parameters is used to investigate the properties of the biological 

analyte for detection [1-6]. Usually, the measured parameters of the molecule 

are converted into measurable parameters such as intensity or wavelength 

resonance by a transducer [7-16]. The sensitivity value of the sensor is related to 

the architecture of the transducer and the waveguide structure used for 

measurement [16-23]. Optical biosensors have attracted the attention of 

researchers due to their small size and ability to be integrated, the cost of 

manufacturing and proper operation, and the detection of biological analyte 

without the need of any label [24-30]. Biosensors with resonator ring structure 

have smaller volume, better sensitivity and higher quality factor than photonic 

sensors such as photonic crystal, disk resonator sensors, MZI (Mach-Zehnder 

Interferometer) based sensors, PCF (photonic crystal fiber) sensors. [31-36]. 

Most plasmonic devices use metal-insulator-metal (MIM) waveguides for 

propagation [37-41], because MIM has the advantages of high sensitivity, ease 

of design, simple fabrication, and small dimensions. The most common metals 

used in these devices are the noble metals gold and silver, which have little 

losses in terms of ohmic [42-48]. However, they have a large optical wavelength 

penalty due to the energy required for interband transfer, intraband transfer, and 

scattered wave [49, 50]. Diffusion losses due to metallic nature are high and can 

cause errors in analyte detection. The response of the sensors that use the 

Kericthman configuration is good, but they are very expensive [51-54]. 

These elements may include antibodies, enzymes, proteins, and similar 

substances. Measurements are typically conducted by a transducer, followed by 

data analysis [55-60]. Optical biosensors are unique due to their use of optical 

measurement methods. These sensors utilize optical transducers to perform 

measurements, with the optical transducer closely integrated with the biosensing 

element. 

For this reason, the classification of optical biosensors based on the type of 
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transducers is of great importance. One common approach in this classification 

is to divide them into two categories: labeled and unlabeled. In labeled 

biosensors, fluorescent or chromogenic markers are used, where the intensity of 

fluorescence or color change is analyzed for the identification of analytes [60-

64]. 

Here, with Finite-Difference Time-Domain (FDTD) a novel biosensor is 

suggested.  

Taken together, the proposed plasmonic biosensor might pave the way 

towards the related limitations of biosensing, detection, and imaging. 

 

 

2. THEORY OF SCHOTTKY JUNCTION  

Ring resonators have many uses due to their ability to be integrated and have 

been noticed and have emerged in integrated optics. Integrated ring resonators 

do not need a periodic surface under the wave or a mirror and a prism or grating 

surface for optical feedback. As a result, their structure is small and can be 

integrated. be made with other components. In the design of ring resonators, 

their structure can be customized and coupled in different ways. Thus, 

plasmonic biosensors constructed with label-free ring resonators that operate 

based on changes in the refractive index parameter can be widely used in 

medical applications, imaging, disease diagnosis, and pathogens in various 

foods. be placed. 

The basic design includes a one-way resonator ring, we show the ring radius 

with r and the width of the waveguide with a that in one direction, the coupling 

and excitation mode is created in the resonator, in this case the loss is very small 

and we consider it as zero. The polarization has been investigated individually 

so that the coupling between the ring and the waveguide of different 

polarizations does not occur. Different losses occur along the propagation path. 

Resonance mode occurs at a specific wavelength and frequency, and the 

coupling of light occurs in the ring (see Figure 1.). 
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Fig. 1 2D-configuration of biosensor 

A part of the structure illustrates in the following figure. 

 

Fig. 2 Fano resonance structure 
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For analysis, we can express the relationship between input and output by 

considering the attenuation coefficient of the light path as follows: 

(1) 
 

 

For the simplicity of the analysis of mixed modes, we normalize E, in this 

case, the absolute value of their square is equal to the modal power. We 

represent the path length attenuation coefficient with t and the coupling 

attenuation coefficient with k. With this interpretation, we have: 

                  (2)  

To simplify the analysis model, we consider equal to 1. Therefore, the 

circular path is defined by the following relation: 

(3)    

Considering that α is the attenuation coefficient of the loop, for zero loss 

mode, we should consider it equal to 1 (α = 1). The position angle θ is 

defined according to the relation (θ=ωL/c), in this relation L is the 

circumference of the ring and r is the radius of the ring. So L = 2πr. c is 

the phase speed that is related to the speed of light in vacuum and the 

effective refractive index according to the state (c=c0/"neff"). Also, ω is 

the angular frequency that is related to the speed of light in vacuum c0 

and the wave number k according to ω = kc0. The vacuum wave number 

k depends on the wavelength λ, k = 2π/λ. Therefore, we can write the 

relations as follows: 

 

(4) 

 

 
 

Considering that β is the propagation constant, we have: 

 
   

  

 



 

 

 

Mohsen Nasrolahi et al.        DOI: 10.30495/JOPN.2024.33499.1321 

  Journal of Optoelectronical Nanostructures. 2024; 9 (3): 97-115               101 

From (1) and (3) we get: 

 

 
 

   

 

  
 

 
  

 

 

As a result, we can obtain the output power according to the following 

equation: 

 

  
 

 

The coupling loss can be obtained from the relation t = |t| exp (jϕt) 

obtained, as previously stated |t| Coupling loss and  is the coupling 

phase. Therefore, we get the power  in the loop as follows: 

 

 
 

In the intensified state, we have the relation , (θ+ )=2πm. Note that m is 

an integer, so the relations are simplified as follows: 
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In a special case where the internal loss of the resonator ring is equal to 

the coupling loss, i.e., 

 α = |t|, the transmission power becomes zero. This is the critical 

coupling state. The equations mentioned for a ring and a waveguide are a 

good model for other resonator ring configurations. And it can be used to 

analyze the complex structures of the resonator ring 

The Sensitivity (S) is defined as: 

                                                      (13) 

FoM is expressed as: 

                                                                                       (14)     

Integrated resonators with high Q-factors are highly desirable because 

plasmonic biosensor with high Q, suggest narrower FWHM, high FoM, low 

resonator losses and large sensitivity. The Q-factor is defined as [61]: 

                                                                                          (15) 

Where λres is the wavelength in which the spectral slope reaches its 
maximum. 

3. RESULTS AND DISCUSSIONS  

In this section, the Fano resonance is observed through modulation of geometric 

parameters and variation of refractive indices. 

3.1 Numerical Results 

Here, the resonances are defined as FR1 and FR2. For FR1, Tmax occurs at 

λpeak = 630nm and Tmax occurs at λdip = 780nm. Therefore, the FWHM for FR1 

can be calculated as 150 nm. Similarly, for FR2, Tmax and and Tmin occur at λpeak 

= 640nm and λdip = 740nm, respectively. As a result, the FWHM for FR2 is 100 

nm. Additionally, it can be seen that in the range of 650 - 850 nm, there are two 
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symmetric Lorentzian like valleys which represent the first and the second eigen 

mode of the ring cavity (see Fig.3). 

 

Fig. 3 The transmission of two Fano resonance 

Physical analysis of the structure of the resonator ring is very important in 

order to achieve how the resonator ring works and requires complex 

mathematical operations. One of the methods of numerical analysis of 

instruments is Finite Difference Time Domain (FDTD) and it can perform 

analysis in the time domain as well. Therefore, it is perfect for the resonator 

loop and provides a very good view.  We have presented a biosensor with a 

hybrid structure of plasmonic resonator ring along with modeling and numerical 

analysis. This hybrid structure based on highly doped n-graphene silicon 

waveguide is very suitable for biosensor application. We have proposed this 

new structure based on the research and investigation of different structures and 

different plasmonic devices according to the following findings to improve and 

improve the functional parameters of the biosensor. 

A- The use of the ring structure of integrated resonators because they do not 

need a periodic surface under the wave or a mirror and a prism surface or a net 

for optical feedback. As a result, their structure is small and they can be made as 

a complex with other components. 

B- We have used the hybrid structure of two lines of resonator ring. The use 

of degenerate semiconductor due to high doping, which reduces losses 

compared to noble conductors such as gold and silver, and because it is more 

compatible with CMOS integration technology. 

C- Adding a layer of graphene to the structure, in fact, graphene is used to 

detect various types of organic and inorganic substances in biological and 

environmental applications, including glucose, cysteine, proteins, biological 
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markers, DNA, heavy metals, etc. Also, biosensors in which graphene is used 

have been used for early detection of various diseases and cancers. 

In order to achieve better parameters of the biosensor and improve the 

performance, we have taken the help of the gray wolf algorithm, and we have 

done the modeling using the FDTD method. 

Optimization problems are ubiquitous across various domains, spanning 

single or multiple objectives and often characterized by intricate landscapes of 

high dimensionality. Traditional optimization methodologies frequently 

encounter limitations when confronted with such complexities. In response, 

metaheuristic algorithms have emerged as promising alternatives, drawing 

inspiration from natural or social systems to navigate complex problem spaces 

effectively. The field profile display in Fig.4. 

 

 

Fig. 4 Demonstration of Fano resonance, FR1 and FR2, using magnetic field 

distributions (|Hz|) at (630 nm (a), 780 nm (c)) and (640 nm (b), 740 nm (d)) 
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The effects of different noble metals display in Fig.5. 

 

 

Fig. 5 The transmission of different noble metals. 

 

As injected light comes from two through and drop ports. Inverse behavior of these 

ports calculated in Fig.6. 

 

Fig. 6 The transmission in through and drop ports 
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when the thickness of the metal waveguide increases (see Fig. 7 (b)), the 

continua state is almost disappeared, and the transmission spectrum takes on a 

symmetric Lorentzian linestyle. The above characteristics indicate that we can 

tune the Fano resonance by changing the thickness of the metal waveguide. 

3.2 Refractive index sensing 

Refractive index sensing is a technique used to measure the refractive index 

of a substance, which is a dimensionless value that describes how light 

propagates through that substance. It is commonly used in various fields 

including chemistry, biology, and physics for applications such as detecting 

biomolecules, monitoring chemical reactions, and studying materials 

properties. The principle behind refractive index sensing is based on the fact 

that the speed of light changes as it passes through different mediums with 

varying refractive index. The effect of various L plots in Fig.7. 

 

 

Fig. 7 The effect of L1. 
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Comparison Table is provided (see Table 1). In this realm some valuable 

works are presented [68-70]. 

Table 2 benchmark of the work. 
Refrence Frequency 

range 
Sensitivity Structure Footprint 

(nm×nm×nm) 
Zhang [65] Near infrared 1060 MIM Waveguide 800 × 800 × 1000 
Zafar [66] Near infrared 1100 MIM Waveguide >400 × >1000 × >1000 
Zafar [67] Near infrared – Split-Ring 

Metasurface 
700 × 700 × 110 

This Work Visible 1160 Split-ring resonator 700 × 1000 × 100 
 

 

4. CONCLUSION 

Here, Fano resonance in plasmonic planar split-ring resonators, a tunable 

refractive index biosensor is proposed. It was shown variation of refractive 

indices leads to various exited modes. Such sharpness is an indication of narrow 

FWHM with the value of 50 nm, which in turn translates into high sensitivity as 

high as 1160 nm/RIU with large FoM of 33. Furthermore, thanks to the 

introduction of hexagonal resonators coupled with the Fano effects, the 

biosensor demonstrated extremely high Q-factor as large as 31 at the resonant 

wavelength of 740 nm. This, apparently, leads to small resonant losses and high 

integration which can be undoubtedly beneficial for a biosensor. Fano resonance 

sensing is an important application in the field of photonics and plasmonics. It 

involves detecting tiny changes in the environment or material properties by 

studying the asymmetric lineshape of Fano resonances. This technique is often 

used in sensor technology for detecting small variations in refractive index, 

temperature, pressure, or molecular interactions 
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