تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,660,132 |
تعداد دریافت فایل اصل مقاله | 5,597,483 |
Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 7، دوره 4، شماره 2 - شماره پیاپی 13، مرداد 2019، صفحه 83-102 اصل مقاله (704.1 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Yagub Sefidgar1؛ Hassan Rasooli Saghai* 1؛ Hamed Ghatei Khiabani Azar2 | ||
1Department of Electrical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran. | ||
2Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran | ||
تاریخ دریافت: 28 مرداد 1397، تاریخ بازنگری: 10 دی 1397، تاریخ پذیرش: 21 خرداد 1398 | ||
چکیده | ||
Multi-junction solar cells play a crucial role in the Concentrated Photovoltaic (CPV) Systems. Recent developments in CPV concerning high power production and cost effective-ness along with better efficiency are due to the advancements in multi-junction cells. This paper presents a simulation model of the generalized Multi-junction solar cell and introduces a two-bond solar cell based on InGaP/GaAs with an AlGaAs/GaAs tunnel layer.For enhancing the efficiency of the proposed solar cell, the model adopts absorption enhancement techniques as well as reducing loss of recombination by manipulating number of junctions and varying the material properties of the multi-junctions and the tunneling layer. The proposed Multijunction solar cell model employing tunnel junctions can improve efficiency up to by 35.6%. The primary results of the simulation for the proposed structure indicate that it is possible to reduce the loss of recombination by developing appropriate lattice match among the layers; it is also likely to have suitable absorption level of the phonons. Simulation results presented in this paper are in agreement with experimental results. | ||
کلیدواژهها | ||
Two-Bond Solar Cell؛ Tunnel Layer؛ Lattice Matching؛ Recombination | ||
مراجع | ||
[1] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson , Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells, Chemical Reviews, 110 (11) , 6873-6890, 2010. [2] M. Green, Photovoltaic principles, Physical E: Low-dimensional Systems and Nanostructures, vol. 14, no. 1, pp. 11–17, 2002. [3] M. Yamaguchi, T. Takamoto, K. Araki, and N. EkinsDaukes, Multi-junction iii–v solar cells: current status and future potential, Solar Energy, vol. 79, no. 1, pp. 78–85, 2005. [4] M. Yamaguchi, Super-high-efficiency MJSCs, Progress in photovoltaics: Research and applications, vol. 13, p. 125, 2005. [5] F. Dimroth and S. Kurtz, High-efficiency multijunction solar cells, MRS bulletin, vol. 32, no. 03, pp. 230–235, 2007. [6] P. K. Maurya, and P. Chakrabarti, Modeling and simulation of heterojunction photovoltaic detector based on InAs0.15Sb0.85 for free space optical communication, Journal of Materials Science: Materials in Electronics, 20, 359-362, 2009. [7] A. Mart´ and A. Luque, Next generation photovoltaics: high efficiency through full spectrum utilization, Taylor & Francis, 2004. [8] M. A. Green, K.Emery, D.L.King, S.Igori and W.Warta, Prog, Photovolt: Res. Appl., 13(2005), 387-392. [9] Alireza Keshavarz, Zahra Abbasi, Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit, Journal of Optoelectronical Nanostructures, Spring 2016 / Vol. 1, No.1 [10] Sayed Mohammad Sadegh Hashemi Nassab, Mohsen Imanieh, Abbas Kamaly, The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency, The Quarterly Journal of Optoelectronical Nanostructures, Spring 2016 / Vol. 1, No.1 [11] R. Sherif, et al., Concentrator triple- junction solar cells and receivers in point focus and dense array modules, Proceedings 21nd EU PVSEC-2006, 2006. 98 * Journal of Optoelectronical Nanostructures Spring 2019 / Vol. 4, No. 2 [12] R. King, N. Karam, J. Ermer, N. Haddad, P. Colter, T. Isshiki, H. Yoon, H. Cotal, D. Joslin, D. Krutet al., Next-generation, high-efficiency iii-v multijunction solar cells, in Photovoltaic Specialists Conference, Conference Record of the Twenty-Eighth IEEE. IEEE, pp. 998–1001, 2000. [13] M. Gonza´lez, N. Chan, N. Ekins-Daukes, J. Adams, P. Stavrinou, I. Vurgaftman, J. Meyer, J. Abell, R. Walters, C. Cress et al., Modeling and analysis of multijunction solar cells, in Proceedings of SPIE, vol. 7933, p. 79330R,2011. [14] W. Guter and A. Bett, I-v characterization of devices consisting of solar cells and tunnel diodes, in Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, vol. 1.IEEE, pp. 749– 752,2006. [15] R. King, D. Law, K. Edmondson, C. Fetzer, G. Kinsey, H. Yoon, R. Sherif, and N. Karam, 40% efficient metamorphic gainp/gainas/ge multijunction solar cells, Applied Physics Letters, vol. 90, no. 18, pp. 183 516–183 516, 2007. [16]. H. Chavez, R. Santiesteban, J.C. McClure and V.P. Singh, J. Mater, Nanostructured Materials for Solar Energy Conversion, Sci.: Mater. Electron, 6 ,21–24, 1995 [17] Ghatei Khiabani Azar H, Rasouli Saghai H, Manipulating frequencydependent diffraction, the linewidth, center frequency and coupling efficiency using periodic corrugations, Opt Quant Electron; 48: 464.1-12, 2016. [18] A. Heller, Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of water in photoelectrochemical cells, Accounts of chemical research, Vol. 14 pp. 154-162, 1981. [19] Hashemi Nassab, S., Imanieh, M., Kamaly, The Effect of Doping and the Thickness of the Layers on CIGS Solar Cell Efficiency, Journal of Optoelectronical Nanostructures, 1(1), 9-24, 2016. Enhancing Efficiency of Two-bond Solar Cells Based on GaAs/InGaP * 99 [20] Alireza Keshavarz, Zahra Abbasi, Spatial soliton pairs in an unbiased photovoltaic-photorefractive crystal circuit, Journal of Optoelectronical Nanostructures, Spring 2016 / Vol. 1, No.1 [21] Izadneshan, H., Gremenok, V., Solookinejad, G. , Fabrication Of Cu(In,Ga)Se2 Solar Cells With In2S3 Buffer Layer By Two Stage Process,Journal of Optoelectronical Nanostructures, 1(2), 47-56 ,2016. [22] Mirkamali, A., khalimovich Muminov, K. , Numerical Simulation of CdS/CIGS Tandem Multi-Junction Solar Cells with AMPS-1D, Journal of Optoelectronical Nanostructures, 2(1), 31-40 ,2017.. [23] Mirkamali, A., Muminov, K. , The Effect of Change the Thickness on CdS/CdTe Tandem Multi-Junction Solar Cells Efficiency, Journal of [20] R.J. Nelson, J.S. Williams, H.J. Leamy, B. Miller, H.C. Casey, Jr., B. Parkinson and A. Heller, Reduction of GaAs surface recombination velocity by chemical treatment, Applied Physics Letters, Vol. 36 pp. 76, 1980. [21] E. Yablonovitch, R. Bhat, J. P. Harbison, and R. A. Logan, Survey of defect-mediated recombination lifetimes in GaAs epilayers grown by different methods, Applied Physics Letters, Vol. 50, pp. 1197-9 Apr. 1987. [22] L. W. Molenkamp and H. F. J. van't Blik, Very low interface recombination velocity in (Al,Ga)As heterostructures grown by organometallic vapor-phase epitaxy, Journal Applied Physics, Vol. 64, pp. 4253, 1988. [23] J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keys and A. E. Kibbler. Ultralow recombination velocity at Ga0.5In0.5P/GaAs heterointerfaces, Applied Physics Letters Vol. 55, pp. 1208, 1989. [24] G. H. Olsen, M. Ettenberg, and R. V. D’Aiello, Vapor-grown InGaP/GaAs solar cells, Applied Physics Letters, Vol. 33, pp. 606-608, 1978. [25] L. Pavesi, M.Guzzi, Photoluminescence of AlxGa1-xAs alloys, Journal of Appied. Physics, Vol. 75, pp. 4779-4842, May 1994. [26] K. W. J. Barnham and G. Duggan, A new approach to high efficiency multi-band-gap solar cell, J. Appl. Phys. 67(7), 1990. [27] K. W. J. Barnham and D. Vvedensky, Low-Dimensional semiconductor structures, Cambridge university press, 393, (2001). [28] K. W. J. Barnham, I. Ballard, J. Connolly, et all, Quantum well solar cell, Physica E, 14, 27-36, 2002. [29] F. Dimroth, High- efficiency solar cells from III-V compound semiconductors, phys.spl.(c)2.(3112),2016. [30] H.jianmin, W. Yiyoung , X.Jingdong, Y.Dezhuang , and Z.Zhhongwei, Degradation behaviors of lectrical properties of GaInP/GaAS/Ge solar cells under <200 keV proton irradiation, Solar Energy Materials & Solar cells 92, (2008). [31] Dorna Mortezapour, Javad Karamdel, Mohamadali Moradian, Improvement of Radiation Resistance in InGaP/GaAs/Ge Triple Junction Solar Cell by using AlInGaP and Grading Doping Concentration3rd conference on renewble energies,Esfahan,,2013. [32] Malmström, J., On Generation and Recombination in Cu(In,Ga)Se2 Thin- Film Solar Cells (PhD dissertation), Acta Universitatis Upsaliensis, Uppsala, (2005). [33] Brübach, J., Ultrathin InAs/GaAs quantum wells : electronic structure, excitonic effects and carrier capture ,Eindhoven: Technische Universiteit Eindhoven , 10.6100/IR539984, 2001. [34] G. A. M. Hurkx, D. B. M. Klaassen, and M. P. G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Transactions on Electron Devices 39, 331-8 (1992). [35] Silvaco International, Silvaco User's Manual, ed. Silvaco, 2006. [36] http://www.pveducation.org/ [37] W. Guter and A. Bett, I-v characterization of tunnel diodes and multijunction solar cells, IEEE Transactions on Electron Devices, vol. 53, no. 9, 2216–2222, 2006. [38] B. Sagol, N. Szabo, H. Doscher, U. Seidel, C. Hohn, K. Schwarzburg, and T. Hannappel, Lifetime and performance of ingaasp and ingaas absorbers for low bandgap tandem solar cells, in 34th IEEE Photovoltaic Specialists Conference (PVSC), IEEE, ,001 090–001 093, 2009. [39] M. Hermle, G. Letay, S. Philipps, and A. Bett, Numerical simulation of tunnel diodes for multi-junction solar cells, Progress in Photovoltaics: Research and Applications, vol. 16, no. 5, 409– 418, 2008. | ||
آمار تعداد مشاهده مقاله: 386 تعداد دریافت فایل اصل مقاله: 493 |