تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,421 |
تعداد دریافت فایل اصل مقاله | 5,597,207 |
Electrostatics Modes in Mono-Layered Graphene | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 1، دوره 1، شماره 2، مهر و آبان 2016، صفحه 1-8 اصل مقاله (538.79 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Alireza Abdikian* 1؛ GHahraman Solookinejad2؛ Zahra Safi1 | ||
1Department of Physics, Malayer University, Malayer, Iran | ||
2Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran | ||
تاریخ دریافت: 01 تیر 1395، تاریخ بازنگری: 16 تیر 1395، تاریخ پذیرش: 22 مرداد 1395 | ||
چکیده | ||
In this paper, we investigated the corrected plasmon dispersion relation for graphene in presence of a constant magnetic field which it includes a quantum term arising from the collective electron density wave interference effects. By using quantum hydrodynamic plasma model which incorporates the important quantum statistical pressure and electron diffraction force, the longitudinal plasmons are the electrostatic collective excitations of the solid electron gas. It shows the importance of quantum term from the collective electron density wave interference effects. By plotting the dispersion relation derived, it has been found that dispersion relation of surface modes depends significantly on Bohm’s potential and statistical terms and it should be taken into account in the case of magnetized or unmagnetized plasma; we have noticed successful description of the quantum hydrodynamic model. So, the quantum corrected hydrodynamic model can effectively describe the Plasmon dispersion spectrum in degenerate plasmas, since it takes into account the full picture of collective electron-wave interference via the quantum Bohm’s potential. By plotting the dispersion relation, the behavior of different wave types was predicted. It was found that one of them should not be propagated to the specific wave number. By drawing of contour curve of these modes, the areas that modes can be propagated were obtained. | ||
کلیدواژهها | ||
Dispersion Relation؛ Electrostatic Waves؛ Graphene؛ Hydrodynamic Equations | ||
مراجع | ||
[1] U. Eckern and A. Kampf. Propagation of Electromagnetic Waves in Graphene Waveguides. Lehrstuhl fur Theoretische Physik, Augsburg, 1993, 145-155.
[2] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, (2009) 109-162.
[3] S. A. Mikhailov, Non-linear electromagnetic response of graphene. EPL. 79 (2007) 27002-27006.
Available: http://stacks.iop.org/0295-5075/79/i=2/a=27002.
[4] S. A. Mikhailov and D. Bebe, Nonlinear broadening of the plasmon linewidth in a graphene stripe, New J. Phys. 14, (2012) 115024-115028.
Available: http://stacks.iop.org/1367-2630/14/i=11/a=115024.
[5] F. Haas, Quantum Plasmas: A Hydrodynamic Approach Springer, New York, 2011, 138-155.
[6] M. Marklund and P. K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions, Rev. Mod. Phys. 78 (2006) 591-641.
[7] H. Haug, and S.W. Koch, Quantum theory of the optical and electronic properties of semiconductors, world scientific, (1990).
[8] D.K. Efetov and P. Kim, Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett., 105 (2010) 256805-256808.
| ||
آمار تعداد مشاهده مقاله: 1,163 تعداد دریافت فایل اصل مقاله: 822 |