تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,648 |
تعداد دریافت فایل اصل مقاله | 5,597,287 |
The X-ray Transform and its Application in Nano Crystallography | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 4، دوره 2، شماره 2 - شماره پیاپی 5، مرداد و شهریور 2017، صفحه 29-40 اصل مقاله (567.47 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
tajedin derikvand1؛ Rajab Ali Kamyabi-Gol* 2؛ mohammad janfada3 | ||
1nternational Campus, Faculty of Mathematic Sciences, Ferdowsi University of Mashhad | ||
2Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad | ||
3Department of Pure Mathematics, Ferdowsi University of Mashhad | ||
تاریخ دریافت: 11 دی 1395، تاریخ بازنگری: 12 شهریور 1396، تاریخ پذیرش: 28 دی 1395 | ||
چکیده | ||
In this article a review on the definition of the X- ray transform and some of its applications in Nano crystallography is presented. We shall show that the X- ray transform is a special case of the Radon transform on homogeneous spaces when the topological group E(n)- the Euclidean group - acts on ℝ2 transitively. First some properties of the Radon transform are investigated then the relationship to texture analysis is briefly illustrated. Finally, some of its applications in material structure detection at the Nano scale are studied. | ||
کلیدواژهها | ||
X- ray transform؛ Nano crystallography؛ homogeneous spaces | ||
مراجع | ||
[1] A. Authier, “Optical properties of X-rays - dynamical diffraction,” Acta Crystallographica A68, 40 (2012). [2] H.J. Bunge, Mathematische Methoden der Texturanalyse, Akademie Verlag, Berlin, 1969. [3] W. Cheney,W. Light, A Course in Approximation Theory, Brookes/Cole, Pacific Groove, CA, 1999. [4] S. R. Deans, The Radon transform and some of its applications, Wiley, New York, 1983. [5] C. L. Epstein, Charles L. Introduction to the Mathematics of Medical Imaging. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2008. [6] G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995. [7] C. Hammond. The Basics of Crystallography and Diffraction. Oxford University Press, 1997. [8] S. Helgason, Integral Geometry and Radon Transform, Springer, New York, 2011. [9] J. Imhof, Determination of the Orientation Distribution Function from One Pole- , texture and microstructures, (1982). 5, 73–86 [10] A. B. Sekerin, Euclidean Motion Group Representations and the Singular Value Decomposition of the Radon Transform, Integral Transforms and Spacial Functions. 00 (2005) 1-34. [11] I. A. Vartanyants, “Coherent X-ray Diffraction Imaging of Nanostructures,” arXiv:1304.5335 (2013). [12] R. O. Williams, Analytical Methods for Representing Complex Textures by Biaxial Pole Figures, (1968), 39, 4329-4335. [13] H. Yan, and L. Li, “X-ray dynamical diffraction from single crystals with arbitrary shape and strain field: A universal approach to modeling,” Phys. Rev. B 89, 014104 (2014). | ||
آمار تعداد مشاهده مقاله: 471 تعداد دریافت فایل اصل مقاله: 348 |