تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,605 |
تعداد دریافت فایل اصل مقاله | 5,597,262 |
Analytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 6، دوره 3، شماره 2 - شماره پیاپی 9، مرداد 2018، صفحه 65-86 اصل مقاله (943.87 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Mehdi Riahinasab* 1؛ Elham Darabi2 | ||
1Department of Electrical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Plasma physics research center, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
تاریخ دریافت: 30 اردیبهشت 1397، تاریخ بازنگری: 18 خرداد 1397، تاریخ پذیرش: 19 تیر 1397 | ||
چکیده | ||
The frequency behavior of the tunnel injection quantum dot vertical cavity surface emitting laser (TIQD-VCSEL) is investigated by using an analyticalnumerical method on the modulation transfer function. The function is based on the rate equations and is decomposed into components related to different energy levels inside the quantum dot and injection well. In this way, the effect of the tunneling process on the improvement of the laser frequency response is determined. Generally, the components of the modulation transfer function in the wetting layer and the excited state limit the total laser bandwidth. Of course, the component associated with the tunneling process increases overall system bandwidth. It is shown that for currents above threshold, the carrier density at the excited state in TIQD has a slight slope, unlike the conventional quantum dot (CQD). It will improve the frequency response of the tunnel injection structure. It can be attributed to the difference in Pauli blocking factor values at the excited state and the ground state in the two structures. | ||
کلیدواژهها | ||
Modulation Transfer Function؛ Tunnel Injection Quantum Dot (TIQD)؛ Vertical Cavity Surface Emitting Laser (VCSEL) | ||
مراجع | ||
[1] N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Egorov, A. E. Zhukov, M. V Maximov, P. S. Kopev, and Z. Alferov. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl. Phys. Lett. 69(9) (1996) 1226–1228. Available: https://aip.scitation.org/doi/10.1063/1.117419 [2] D. Klotzkin, K. Kamath, K. Vineberg, P. Bhattacharya, R. Murty, and J. Laskar. Enhanced modulation bandwidth (20 GHz) of In/sub 0.4/Ga/sub 0.6/As-GaAs selforganized quantum-dot lasers at cryogenic temperatures: role of carrier relaxation and differential gain. IEEE Photonics Technol. Lett. 10(7) (1998, July) 932–934. Available: https://ieeexplore.ieee.org/document/681274 [3] G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester. Extremely low roomtemperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well. Electron. Lett. 35 (1999) 1163–1165. Available: https://pdfs.semanticscholar.org/29f5 [4] R. P. Sarzala. Modeling of the threshold operation of 1.3-/spl mu/m GaAs-based oxide-confined (InGa)As-GaAs quantum-dot vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 40(6) (2004) 629–639. Available: https://ieeexplore.ieee.org/document/1303776 [5] M. V Maksimov, N. Y. Gordeev, S. V Zaitsev, P. S. Kop’ev, I. V Kochnev, N. N. Ledentsov, A. V Lunev, S. S. Ruvimov, A. V Sakharov, A. F. Tsatsul’nikov, Y. M. Shernyakov, Z. I. Alferov, and D. Bimberg. Quantum dot injection heterolaser with ultrahigh thermal stability of the threshold current up to 50 °C. Semiconductors. 31(2) (1997, Feb.) 124–126. Available: https://cip.cornell.edu/handle/cul.maik.sc/1214589781 [6] O. B. Shchekin and D. G. Deppe. 1.3m InAs quantum-dot laser with K from 0 to 80C. Appl. Phys. Lett. 80 (2002) 3277–3279. [7] D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V Maximov, Y. M. Shernyakov, and B. V Volovik. Quantum dot lasers: Breakthrough in optoelectronics. Thin Solid Films. 367 (2000) 235–249. Available: https://www.sciencedirect.com/science/article/pii/ [8] M. H. Yavari and V. Ahmadi. Effects of Carrier Relaxation and Homogeneous Broadening on Dynamic and Modulation Behavior of Self-Assembled Quantum- Dot Laser. IEEE J. Sel. Top. Quantum Electron. 17(5) (2011, Sep.) 1153–1157. Available: https://ieeexplore.ieee.org/document/5735155/ [9] J. Urayama, T. B. Norris, J. Singh, and P. Bhattacharya. Observation of phonon bottleneck in quantum dot electronic relaxation. Phys. Rev. Lett. 86(21) (2001, May) 4930–4933. Available: https://www.ncbi.nlm.nih.gov/pubmed/11384384 [10] A. Fiore and A. Markus. Differential Gain and Gain Compression in Quantum- Dot Lasers. IEEE J. Quantum Electron. 43(4) (2007, Mar.) 287–294. Available: https://ieeexplore.ieee.org/document/4099479/ [11] C. Wang, F. Grillot, and J. Even. Impacts of Wetting Layer and Excited State on the Modulation Response of Quantum-Dot Lasers. IEEE J. Quantum Electron. 48(9) (2012, Sep.) 1144–1150. Available: http:// ieeexplore.ieee.org/document/6220843/ [12] P. Bhattacharya, J. Singh, H. Yoon, Xiangkun Zhang, A. Gutierrez-Aitken, and Yeeloy Lam. Tunneling injection lasers: a new class of lasers with reduced hot carrier effects. IEEE J. Quantum Electron. 32(9) (1996) 1620–1629. Available: https://ieeexplore.ieee.org/document/535367/ [13] X. Zhang, A. Gutierrez-Aitken, D. Klotzkin, P. Bhattacharya, C. Caneau, and R. Bhat. 0.98-μm multiple-quantum-well tunneling injection laser with 98-GHz intrinsic modulation bandwidth. IEEE J. Sel. Top. Quantum Electron. 3(2) (1997, Apr.) 309–314. Available: http://irepose.iitm.ac.in:8080/jspui/handle/11717/4416 [14] H. Yoon, A. L. Gutierrez-Aitken, R. Jambunathan, J. Singh, and P. K. Bhattacharya. A ‘cold’ InP-based tunneling injection laser with greatly reduced Auger recombination and temperature dependence. IEEE Photonics Technol. Lett. 7(9) (1995, Sep.) 974–976. Available: https://ieeexplore.ieee.org/document/414673/ [15] P. Bhattacharya, S. Ghosh, S. Pradhan, J. Singh, Zong-Kwei Wu, J. Urayama, Kyoungsik Kim, , and T. B. Norris. Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers. IEEE J. Quantum Electron. 39(8) (2003) 952–962. Available: https://ieeexplore.ieee.org/document/1211140/ [16] G. Cerulo, L. Nevou, V. Liverini, F. Castellano, and J. Faist. Tuning the dynamic properties of electrons between a quantum well and quantum dots. J. Appl. Phys., 112(4) (2012) 43702. Available: https://aip.scitation.org/doi/abs/10.1063/1.4746789 [17] S. Bhowmick, M. Z. Baten, T. Frost, B. S. Ooi, and P. Bhattacharya. High Performance InAs/In0.53Ga0.23Al0.24As/InP Quantum Dot 1.55 μm Tunnel Injection Laser. IEEE Journal of Quantum Electronics. 50(1) (2014) 7-14. Available: https://ieeexplore.ieee.org/document/6665003/ [18] H. Abbaspour, V. Ahmadi, and M. H. Yavari. Analysis of QD VCSEL Dynamic Characteristics Considering Homogeneous and Inhomogeneous Broadening. IEEE J. Sel. Top. Quantum Electron. 17(5) (2011, Sep.) 1327–1333. Available: https://ieeexplore.ieee.org/document/5735154/ [19] F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche. Spectral analysis of 1.55 μmInAs-InP(113)B quantum-dot lasers based on a multipopulation rate equations model. IEEE J. Quantum Electron. 45(7) (2009, July) 872–878. Available: https://hal.archives-ouvertes.fr/hal-00501878/document [20] H. Jiang and J. Singh. Strain distribution and electronic spectra of InAs/GaAs selfassembled dots: An eight-band study. Phys. Rev. B. 56 (1997) 4696–4701. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.56.4696 [21] C. Tong, D. Xu, and S. F. Yoon. Carrier relaxation and modulation response of 1.3-μmInAs-GaAs quantum dot lasers. J. Lightwave Technol. 27(23) (2009, Dec.) 5442–5450. Available: https://ieeexplore.ieee.org/document/5208395/ [22] T. W. Berg, J. Mork. Quantum dot amplifiers with high output power and low noise. Applied Physics Letters. 82(18) (2003, May) 3083-3085. Available: https://aip.scitation.org/doi/10.1063/1.1571226. | ||
آمار تعداد مشاهده مقاله: 271 تعداد دریافت فایل اصل مقاله: 429 |