تعداد نشریات | 12 |
تعداد شمارهها | 572 |
تعداد مقالات | 5,911 |
تعداد مشاهده مقاله | 8,822,519 |
تعداد دریافت فایل اصل مقاله | 5,729,884 |
Computational Investigation on Structural Properties of Carbon Nanotube Binding to Nucleotides According to the QM Methods | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 7، دوره 4، شماره 1 - شماره پیاپی 12، فروردین 2019، صفحه 99-124 اصل مقاله (684.11 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Nima Karachi* 1؛ Masoomeh Emadi1؛ Mojtaba Servatkhah2 | ||
1Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht , Iran | ||
2Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht , Iran | ||
تاریخ دریافت: 25 بهمن 1397، تاریخ پذیرش: 02 فروردین 1398 | ||
چکیده | ||
The interaction between nucleotides and carbon nanotubes (CNTs) is a subject of many investigations for treating diseases but there are many questions in this field that remain unanswered. Because of experimental methods involve assumptions and interpretation besides limitations, there are many problems that the best study for them is using theoretical study. Consequently, theoretical methods have become a competitive alternative to experiments for biochemical investigations. In order to search about the response of SWCNTs in binding to DNA, the interaction between 3 different sequences of B-form single-strand DNA (ssDNA) and outer surface of single-walled carbon nanotubes (SWCNTs) is considered. So we studied the interaction between (5`-ATC- 3`,5`-TCA-3`,5`-TCG-3`) and SWCNT by using Molecular Mechanic(MM) ,Hartree- Fock(HF) and Density Functional Theory(DFT,B3LYP) methods in gas phase. The basis sets used were STO-3G, 6–31G.In current interest, energy, dipole moment, total atomic charges and NMR parameters calculated to obtain information about the molecular structures and stability of these combinations. Our results revealed the effect of DNA base and the sequence of nucleotides on the interaction of DNA/SWCNTs systems. So, we can predict that diseases with special mutation are the better aim for Gene therapy. Therefore, the outcome reported in this paper indicates that theoretical data can give us essential insights into the nature of molecular structures interacted to nanotubes. | ||
کلیدواژهها | ||
Single Walled Carbon Nanotube (SWCNT)؛ Density Functional Theory (DFT)؛ Hartree-Fock ( HF) | ||
مراجع | ||
[1] S. M. Moghimi, A.C. Hunter, and J. C. Murray. Nanomedicine: current status and future prospects. FASEB J. 19 (2005) 311. Available: https://www.ncbi.nlm.nih.gov/pubmed/15746175 [2] M. Masoudzadeh, N. Karachi, Enhanced removal of humic acids (HAs) from aqueous solutions using MWCNTs modified by N-(3-nitro-benzylidene)-Ntrimethoxysilylpropyl- ethane-1,2-diamine on Equilibrium, thermodynamic and kinetics. J. Phys .Theo Chem, 14 (3) (2017) 270. Available: https://eng.noormags.ir/.../1339981/enhanced-removal-of-humic-acids-hasfrom- aqueous. [3] T.Belin and F. Epron. Carbon nanotubes due to their specific (TEM) are often used to study CNTs Mater. Sci. Eng. B. 119 (2005) 105. Available: https://www.sciencedirect.com/science/article/pii/S0921510705001315 [4] M. Sarafbidabad, Z. Parsaee, Z. Noor Mohammadi,N. Karachi , R Razavie, Novel double layer film composed of reduced graphene oxide and Rose Bengal dye: design, fabrication and evaluation as an efficient chemosensor for silver(I) detection. New J. Chem., 42, (2018) 13674. Available: https://pubs.rsc.org/en/content/articlelanding/2018/nj/c8nj01796d [5] E. Herzog, A. Casey, F. M. Lyng , G. Chambers, H. J. Byrne, and M. Davoren, A new approach to the toxicity testing of carbon-based nanomaterials--the clonogenic assay. Toxico. Lett., 174 (2007), 49. Available:https://www.ncbi.nlm.nih.gov/pubmed/17920791 [6] C. Zhao, L. Ji, H. Liu, G. Hu, S. Zhang, M. Yang, and Z. Yang, Functionalized carbon nanotubes containing isocyanate groups. J. Solid. State. Chem. 177, (2004). 4394. Computational Investigation on Structural Properties of Carbon Nanotube *121 Available: https://www.sciencedirect.com/journal/journal-of-solid-statechemistry/ vol/177/issue/12 [7] R. H.Baughman, R. H.Zakhidov, W. A.de Heer, Carbon nanotubes-the route toward applications Science 297, 787 (2002) science. Available: sciencemag.org/content/297/5582/787. [8] Z. Parsaee, N. Karachi, S. M. Abrishamifar,M. R. Rezaei Kahkha, R. Razavi, Silver-choline chloride modified graphene oxide: Novel nanobioelectrochemical sensor for celecoxib detection and CCD-RSM model. Ultrason- Sonochem 45 (2018),106. Available: https://www.ncbi.nlm.nih.gov/pubmed/29705303 [9] L. Zhou,H. Kamyab,A. Surendar, A. Maseleno, A. Z. Ibatova, S.shivadasa, N. Karachi, n. Chelliapan, Z. Parsaee, Novel Z-scheme composite Ag2CrO4/NG/polyimide as high performance nano catalyst for photoreduction of CO2: Design, fabrication, characterization and mechanismj photochem. Journal of Photochemistry and Photobiology A: Chemistry 368(2018).364. Available: https://www.sciencedirect.com/science/article/pii/S1010603018305550 [10] M, Nayeri, p, keshavarzian, M. Nayer, A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube, Journal of Optoelectronical Nanostructure,3(1)(2018) 15. [11] T. Zhou, C. Xu, X. Zhang, C. Cheng, L. Chen, and Y. Xu, A Simple Theoretical Model for Ring and Nanotube Radial Breathing Mode Acta. Physic. Chimica. Sinica. 24 (2008), 1579. Available: https://www.sciencedirect.com/journal/acta-physico-chimicasinica/ vol/24/issue/9 [12] X. Li, Y. Peng, and X. Qu, A new approach to the toxicity testing of carbonbased nanomaterials--the clonogenic assay. Nucleic Acids Res. 13 (2006), 3670. Available: https://academic.oup.com/nar/issue/34/13 [13] M. Masoudzadeh,N.Karachi, Removal of Cadmium Ion from Waste Water Using Carboxylated Nanoporous Graphene (G-COOH). Eurasian J. Anal. Chem.4 (2018). ,18 Available: www.eurasianjournals.com/Author-Nima-Karachi/74721 [14] G. Lu, P. Maragakis, and E. Kaxiras, , Carbon nanotube interaction with DNA Nano Lett. 5 (2005). , 897. Available: https://pubs.acs.org/doi/abs/10.1021/nl050354u [15] X. Zhao and J. K. Johnson, Simulation of Adsorption of DNA on Carbon Nanotubes J. Am. Chem. Soc. 34 (2007) , 10438. Available: https://pubs.acs.org/doi/10.1021/ja071844m [16] T. Ramanathan, F. T. Fisher, R. S. Ruoff, and L. C. Brinson, Amino- Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems Chem.Mater. 17 (2005). 1290. Available: https://pubs.acs.org/doi/10.1021/cm048357f [17] S. Meng, W. L. Wang, P. Maragakis, and E. Kaxiras, Determination of DNABase Orientation on Carbon Nanotubes through Directional Optical Absorbance Nano. Lett.8 (2007), 2312. Available: https://pubs.acs.org/doi/10.1021/nl070953w [18] A. Star, E. Tu, J. Niemann, J. Christophe, P. Gabriel, C. S. Joiner,and C. Valcke, Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. PNAS 41, (2006). 921. [19] C. Hu, Y. Zhang, G. Bao, M. Liu, and Z. L. Wang, DNA Functionalized Single-Walled Carbon Nanotubes for Electrochemical Detection J. Phys.Chem B 43, (2005). 20072. Available: https://pubs.acs.org/doi/abs/10.1021/jp0550457 [20] M. E. Hughes, E. Brandin, and J. A. Golovchenko, Optical Absorption of DNA−Carbon Nanotube Structures Nano. Lett.5 (2007), 1191. Available: pubs.acs.org/doi/abs/10.1021/nl062906u [21] S. Meng, P. Maragakis, C. Papaloukas, and E. Kaxiras, Tuning the Performance of Layer-by-Layer Assembled Organic Light Emitting Diodes by Controlling the Position of Isolating Clay Barrier Sheets Nano. Lett.1, (2007). 45. Available: https://pubs.acs.org/doi/abs/10.1021/nl005514a [22] G. Rink, Y. Kong, and T. Koslowski, Theory and simulation of charge transfer through DNA – nanotube contacts Chem. Phys. 327, (2006). 98. Available: https://www.sciencedirect.com/science/article/abs/pii/S0301010406002382 [23] H. Gao, Y. Kong, and D. Cui, Spontaneous Insertion of DNA Oligonucleotides into Carbon Nanotubes Nano. Lett. 3 (2003). , 471. Available: https://pubs.acs.org/doi/10.1021/nl025967a [24] W. Yang, M. J. Moghaddam, S. Taylor, B. Bojarski, and L. Wieczorek, Single-walled carbon nanotubes with DNA recognition Chem. Phys. Lett. 443 (2007). , 169. Available: https://www.sciencedirect.com/science/article/pii/S0009261407008251 [25] S. Daniel, T. P. Rao, K. S. Rao, S. U. Rani, G. R. K. Naidu, H. Y.Lee, and T. Kawai, A review of DNA functionalized/grafted carbon nanotubes and their characterization Sens. Actuators, B 122 (2007) , 672. Available: https://www.sciencedirect.com/science/article/pii/S0925400506004527 [26] S. Gowtham, R. H. Scheicher, R. Ahuja, R. Pandey, and S. P. Karna , Physisorption of nucleobases on graphene: Density-functional calculations Phys. Rev. B 76, (2007)3401. Available: https://link.aps.org/doi/10.1103/PhysRevB.76.033401 [27] H, Bahramiyan, S, Bagheri, Linear and nonlinear optical properties of a modified Gaussian quantum dot: pressure, temperature and impurity effect. Journal Optoelectronical Nanostructure 3(3) (2018), 79. Available: jopn.miau.ac.ir/author.index?vol=418&vl=Volume%203%20(2018) [28] M. J. Moghaddam, S. Taylor, M. Gao, S. Huang, L. Dai, and J. McCall, Highly Efficient Binding of DNA on the Sidewalls and Tips of Carbon Nanotubes Using Photochemistry Nano. Lett. 4(1), (2004)89, Available: pubs.acs.org/doi/full/10.1021/nl034915y [29] Y, Abed, F Mostaghni, Polarizability and Hyperpolarizability of Schiff Base Salen-H2 as Judged as UV-vis Spectroscopy and Simulation Analysis Journal Optoelectronical Nanostructure 3(1)(2018) 27, Available: jopn.miau.ac.ir/article_2821_c4ebdfdacf10e9e15d084b7180970784.pdf [30] M. Zheng, K. Eom and Ch. Ke. Calculations of the resonant response of carbon nanotubes to binding of DNA, J. Phys. D: Appl. Phys. 42 (2009). 145408 [31] Z. Parsaee, N. Karachi, S. M. Abrishamifar,M. R. Rezaei Kahkha, R. Razavi, Silver-choline chloride modified graphene oxide: Novel nanobioelectrochemical sensor for celecoxib detection and CCD-RSM model Ultrasonics - Sonochemistry 45 (2018). ,106–115. Available: https://www.sciencedirect.com/science/article/pii/S1350417718304310 [32] M, Riahinasab, E, Darabi Analytical Investigation of Frequency Behavior in Tunnel Injection Quantum Dot VCSEL Journal Optoelectronical Nanostructure 3( 2) (2018) 65. Available: jopn.miau.ac.ir/article_2876_3ac61163b777771c8c771cc5f808bb45.pdf [33] S. J, Mousavi The effect of preparation method and presence of impurity on structural properties and morphology of iron oxide Journal Optoelectronical Nanostructure 2( 4)(2017) 1. Available: jopn.miau.ac.ir/article_2195_53c324065a22d87f49373f7ca13e4f95.pdf [34] A.E. Ozel, S. Celik, and S. Akyuz, Vibrational spectroscopic investigation of free and coordinated 5-aminoquinoline: The IR, Raman and DFT studies J. Mol. Struct. 925 (2009) 523. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022286009000210 [35] N. Karachi,A. Boshra, Alkali endohedrals of C24(BN)12 heterofullerenes: A DFT aqueous phase study Heteroatom Chemistry,29 (4) (2018) e21435. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/hc.21435 [36] N. Karachi , O. Azadi , R. Razavi , A. Tahvili , Z. Parsaee, Combinatorial experimental and DFT theoretical evaluation of a nano novel thiodicarboxaldehyde based Schiff base supported on a thin polymer film as a chemosensor for Pb2+ detection j photochem and photobio A. 360 , (2018). 152. Available: https://www.sciencedirect.com/science/article/pii/S1010603018303496 [37] A. Maiti, Multiscale modeling with carbon nanotubes Microelectronics 39 (2008), 208. Available: https://www.sciencedirect.com/science/article/pii/S0026269206001200 [38] A.J.D .Melinda, A.J.D. Solid state NMR spectroscopy; Principles and Applications, Cambridge University Press,UK( 2003). Available: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470999394.fmatter | ||
آمار تعداد مشاهده مقاله: 298 تعداد دریافت فایل اصل مقاله: 316 |