تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,400 |
تعداد دریافت فایل اصل مقاله | 5,597,203 |
Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 2، دوره 4، شماره 2 - شماره پیاپی 13، مرداد 2019، صفحه 13-28 اصل مقاله (433.68 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Mahsa Roohy؛ Reza Hosseini* | ||
Department of Electrical Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran | ||
تاریخ دریافت: 11 فروردین 1398، تاریخ بازنگری: 04 خرداد 1398، تاریخ پذیرش: 21 خرداد 1398 | ||
چکیده | ||
In this paper, we have presented a heterojunction gate all around nanowire tunneling field effect transistor (GAA NW TFET) and have explained its characteristics in details. The proposed device has been structured using Germanium for source region and Silicon for channel and drain regions. Kane's band-to-band tunneling model has been used to account for the amount of band-to-band tunneling generation rate per unit volume of carriers which tunnel from valence band of source region to conduction band of channel. The simulations have been carried out by three dimensional Silvaco Atlas simulator. Using extensive device simulations, we compared the results of presented heterojunction structure with those of Silicon gate all around nanowire TFET. Whereas due to thinner tunneling barrier at the source-channel junction which leads to the increase of carrier tunneling rate, the heterojunction gate all around nanowire TFET shows excellent characteristics with high on-state current, superior transconductance and high cut-off frequency. | ||
کلیدواژهها | ||
Heterojunction GAA NW TFET؛ Silicon GAA NW TFET؛ On-State؛ Off-State؛ Cut-Off Frequency | ||
مراجع | ||
[1] D. Lizzit, P. Palestri, D. Esseni, A. Revelant, L. Selmi. Analysis of the Performance of n-Type FinFETs with Strained SiGe Channel. IEEE Transaction on Electron Devices, 60(6) (2013) 1884-1891. available: https://ieeexplore.ieee.org/document/6515165 [2] R. Hosseini, M. Fathipour, R. Faez. A comparative study of NEGF and DDMS models in the GAA silicon nanowire transistor. International Journal of Electronics. 99(9) (2012) 1299–1307. available: https://www.tandfonline.com/doi/abs/10.1080/00207217.2012.669709 [3] Ch. Lee, I. Ferain, A. Afzalian, R. Yan, N. Dehdashti, P. Razavi, J. Colinge, Performance estimation of junctionless multigate transistors, Solid-State Electronics. 54(2) (2010) 97–103. Available: https://www.sciencedirect.com/science/article/pii/S0038110109003463 [4] K. Pourchitsaz, M. R. Shayesteh, Self-heating effect modeling of a carbon nanotube-based fieldeffect transistor (CNTFET), Journal of Optoelectronical Nanostructures. 4(1) (2019) 51-66. Available: http://jopn.miau.ac.ir/article_3385.html [5] M. Akbari Eshkalak, R. Faez, A Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor, Journal of Optoelectronical Nanostructures, 2(3) (2017) 1-12.Available: http://jopn.miau.ac.ir/article_2427.html [6] M. Nayeri, P. Keshavarzian, M. Nayeri, A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube, Journal of Optoelectronical Nanostructures, 3(1) (2018) 15-26. Available: http://jopn.miau.ac.ir/article_2820.html [7] A. Rezaei, B. Azizollah-Ganji, M. Gholipour, Effects of the Channel Length on the Nanoscale Field Effect Diode Performance, Journal of Optoelectronical Nanostructures, 3(2) (2018), 29-40. Available: http://jopn.miau.ac.ir/article_2862.html [8] P. Bal, B. Ghosh, P. Mondal, M. Akram, B. Mukund, M. Tripathi. Dual material gate junctionless tunnel field effect transistor. Journal of Computational Electronic, 13(1) (2014) 230–234. Available: https://link.springer.com/article/10.1007/s10825-013-0505-4 [9] M. Raushan, N. Alam, M. Siddiqui. Performance Enhancement of Junctionless Tunnel Field Effect Transistor Using Dual-k Spacers. Journal of Nanoelectronics and Optoelectronics, 13(6) (2018) 1–9. Available: https://www.ingentaconnect.com/contentone/asp/jno/2018/00000013/00000 006/art00016 [10] D. Xiao, X. Wang, Y. Yu, J. Chen, M. Zhang, Z. Xue, J. Luo, TCAD study on gate-all-around cylindrical (GAAC) transistor for CMOS scaling to the end of the roadmap. Microelectronic Journal, 40(12) (2009) 1766–1771. Available: https://www.sciencedirect.com/science/article/abs/pii/S0026269209001815 [11] M. Cheralathan, A. Cerdeira, B. Iniguez, Compact model for long-channel cylindrical surrounding-gate MOSFETs valid from low to high doping concentrations. Solid-State Electronics. 55(1) (2011)13–18. Available: https://www.sciencedirect.com/science/article/pii/S0038110110003266 [12] R. Hosseini, M. Fathipour, R. Faez. Quantum simulation study of gate-allaround (GAA) silicon nanowire transistor and double gate metal oxide semiconductor field effect transistor (DG MOSFET). International Journal of the Physical Sciences, 7(28) (2012) 5054-5061. Available: https://academicjournals.org/journal/IJPS/article-abstract/B27116C16368 [13] M. Rahimian, M. Fathipour. Junctionless nanowire TFET with built-in NP- N bipolar action: Physics and operational principle. Journal of Applied Physics, 120(22) (2016) 225702. Available: https://aip.scitation.org/doi/abs/10.1063/1.4971345?journalCode=jap [14] M. Rahimian., M. Fathipour. Asymmetric junctionless nanowire TFET with built-in n+ source pocket emphasizing on energy band modification. Journal of Computational Electronics. 15(4) (2016) 1297-1307. Available: https://link.springer.com/article/10.1007%2Fs10825-016-0895-1 A. Verhulst, W. Vandenberghe, K. Maex, G. Groeseneken. Boosting the on-current of a n-channel nanowire tunnel field-effect transistor by source material optimization. Journal of Applied Physics, 104(6) (2008) 064514. Available: https://aip.scitation.org/doi/10.1063/1.2981088 [15] S. Marjani, S. E. Hosseini, R. Faez. A 3D analytical modeling of tri-gate tunneling field-effect transistors. Journal of Computational Electronics. 15(3)(2016) 820–830. Available: https://link.springer.com/article/10.1007/s10825-016-0843-0 [16] R. Molaei Imen Abadi, S. A. Sedigh Ziabari. Representation of type I heterostructure junctionless tunnel field effect transistor for highperformance logic application. Applied Physics A. 122 (2016) 616. Available: https://link.springer.com/article/10.1007/s00339-016-0151-3 [17] E. Kurniawan, Sh. Yang, V. Thirunavukkarasu, Y. Wu. Analysis of Ge-Si Heterojunction Nanowire Tunnel FET: Impact of Tunneling Window of Band-to-Band Tunneling Model. Journal of The Electrochemical Society. 164 (11) (2017) E3354-E3358. Available: http://jes.ecsdl.org/content/164/11/E3354.abstract [18] J. Huang, P. Long, M. Povolotskyi, H. Ilatikhameneh, T. Ameen, R. Rahman, R. Rodwell, G. Klimeck. A Multiscale Modeling of Triple- Heterojunction Tunneling FETs. IEEE Transaction on Electron Devices. 64(6) (2017) 2728-2735. Available: https://ieeexplore.ieee.org/document/7898786 [19] R. Molaei Imen Abadi, S. A. Sedigh Ziabari. Representation of strained gate-all around junctionless tunneling nanowire filed effect transistor for analog applications. Microelectronic Engineering. 162 (2016) 12–16. https://www.sciencedirect.com/science/article/abs/pii/S0167931716302179 [20] Q. Zhao, S. Richter, Ch. Schulte-Braucks, L. Knoll, S. Blaeser, G. Luong, S. Trellenkamp, A. Schafer, A. Tiedemann, J. Hartmann, K. Bourdelle, S. Mantl. Strained Si and SiGe Nanowire Tunnel FETs for Logic and Analog Applications. IEEE Journal of the Electron Devices Society. 3(3) (2015)103-114. Available: https://ieeexplore.ieee.org/abstract/document/7031858/ [21] Silvaco Int.: ATLAS User’s Manual, Device simulation Software, Silvaco International, Santa Clara (2016) [22] A. Schenk. Finite-temperature full random-phase approximation model of band-gap narrowing for silicon device simulation. Journal of Applied Physics, 84(7) (1998) 3684- 3694. Available: https://aip.scitation.org/doi/10.1063/1.368545 [23] A. Richter, S.W. Glunz, F. Werner, J. Schmidt, A. Cuevas. Improved quantitative description of Auger Recombination in crystalline silicon, Physical Review B, 86(2012) 165202. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165202 [24] W. Shockley, W. Read. Statistics of the Recombination of Holes and Electrons. Physical Review. 87(1952) 835-842. Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.87.835 [25] R. N. Hall. Electron Hole Recombination in Germanium. Physical Review. 87(1952) 387. Available: https://journals.aps.org/pr/abstract/10.1103/PhysRev.87.387 [26] M. G. Bardon, H. P. Neves, R. Puers, Ch. V. Hoof. Pseudo twodimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Transaction on Electron Devices. 57(4) (2010) 827–834. Available: https://ieeexplore.ieee.org/document/5415671 [27] E. Kane. Theory of tunneling. Journal of Applied Physics. 32(1) (1961) 83–91. Available: https://aip.scitation.org/doi/10.1063/1.1735965 [28] E. Kane. Zener tunneling in semiconductors. Journal of Physics and Chemistry of Solids. 12(2) (1961)181–188. Available: https://www.sciencedirect.com/science/article/abs/pii/0022369760900354 Performance Study and Analysis of Heterojunction Gate All Around Nanowire … * 27 [29] N. Bagga, S. Dasgupta. Surface Potential and Drain Current Analytical Model of Gate All Around Triple Metal TFET. IEEE Transaction on Electron Devices. 64 (2)(2017) 606 – 613. Available: https://ieeexplore.ieee.org/document/7807255 [30] H. Kao, A. Verhulst, W. Vandenberghe, B. Soree, B. Groeseneken, K. Meyer. Direct and Indirect Band-to-band Tunneling in Germanium-based TFETs. IEEE Transaction on Electron Devices. 59(2) (2012) 292–30. Available: https://ieeexplore.ieee.org/abstract/document/6096396/ | ||
آمار تعداد مشاهده مقاله: 475 تعداد دریافت فایل اصل مقاله: 573 |