- I. Abrahams and E. Hadzifejzovic, “Lithium ion conductivity and thermal behaviour of glasses and crystallised glasses in the system Li 2 O – Al 2 O 3 – TiO 2 – P 2 O 5,” Solid State Ionics, vol. 134, pp. 249–257, 2000.
- S. Soman, Y. Iwai, J. Kawamura, and A. Kulkarni, “Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic,” J. Solid State Electrochem., vol. 16, no. 5, pp. 1761–1766, Nov. 2011.
- J. L. Narváez-Semanate and a. C. M. Rodrigues, “Microstructure and ionic conductivity of Li1+xAlxTi2−x(PO4)3 NASICON glass-ceramics,” Solid State Ionics, vol. 181, no. 25–26, pp. 1197–1204, Aug. 2010.
- T. Salkus, A. Dindune, Z. Kanepe, J. Ronis, A. Urcinskas, A. Kezionis, and A. Orliukas, “Lithium ion conductors in the system Li1+yGe2−x−yTixAly(PO4)3 (x=0.1÷0.3, y=0.07÷0.21),” Solid State Ionics, vol. 178, pp. 1282–1287, Jul. 2007.
- H. Rusdi, A. A. Rahman, R. H. Y. Subban, and N. S. Mohamed, “Characterisation of Lithium Aluminium Titanium Phosphate as Solid Electrolytes Synthesized by Mechanical Milling Method,” Adv. Mater. Res., vol. 545, pp. 190–194, 2012.
- H. Peng, H. Xie, and J. B. Goodenough, “Use of B2O3 to improve Li+-ion transport in LiTi2(PO4)3-based ceramics,” J. Power Sources, vol. 197, pp. 310–313, Jan. 2012.
- A. K. et al. F. Orliukas , ⁎, T. Šalkus, “Structure and broadband impedance spectroscopy of Li1.3AlyYx−yTi1.7(PO4)3 ( x = 0 . 3 ; y = 0 . 1 , 0 . 2 ) solid electrolyte ceramics,” Solid State Ionics, vol. 225, pp. 620–625, 2012.
- S. Branch, “Lithium Titanium Phosphate as Cathode , Anode and Electrolyte for Lithium Rechargeable Batteries,” Chem. Sustain. Dev., vol. 2, pp. 253–260, 2005.
- N. V. Kosova, E. T. Devyatkina, a. P. Stepanov, and a. L. Buzlukov, “Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x= 0; 0.3) prepared by mechanical activation,” Ionics (Kiel)., vol. 14, no. 4, pp. 303–311, Jan. 2008.
- Y. Yoon, J. Kim, C. Park, and D. Shin, “The relationship of structural and electrochemical properties of NASICON structure Li1.3Al0.3Ti1.7 (PO4)3 electrolytes by a sol-gel method,” J. Ceram. Process. Res., vol. 14, no. 4, pp. 563–566, 2013.
- G. Vijayan, Lakshmi; Govindaraj, “ELECTRICAL RELAXATION STUDIES OF HIGH ENERGY BALL-MILLED NASICON TYPE MATERIALS,” J. Phys. Chem. Solids, vol. 72, no. 6, pp. 613–619, 2011.
- S. Duluard, A. Paillassa, L. Puech, P. Vinatier, V. Turq, P. Rozier, P. Lenormand, P.-L. Taberna, P. Simon, and F. Ansart, “Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry,” J. Eur. Ceram. Soc., vol. 33, no. 6, pp. 1145–1153, Jun. 2013.
- B. Key, D. J. Schroeder, B. J. Ingram, and J. T. Vaughey, “Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries,” Chem. Mater, vol. 24, pp. 287–293, 2012.
- M. Kotobuki, “Preparation of Li-ion conductive ceramics through a sol-gel route,” in 2nd International Conference on Electrical, Electronics and Civil Engineering, 2012, vol. 3, pp. 165–167.
- [P. Zhang, H. Wang, Q. Si, M. Matsui, Y. Takeda, O. Yamamoto, and N. Imanishi, “High lithium ion conductivity solid electrolyte of chromium and aluminum co-doped NASICON-type LiTi2(PO4)3,” Solid State Ionics, vol. 272, pp. 101–106, Apr. 2015.
- Z. Xiao, S. Chen, and M. Guo, “Influence of Li3PO4 addition on properties of lithium ion-conductive electrolyte Li1.3Al0.3Ti1.7(PO4)3,” Trans. Nonferrous Met. Soc. China, vol. 21, no. 11, pp. 2454–2458, Nov. 2011.
- K. Takahashi, J. Ohmura, D. Im, D. J. Lee, T. Zhang, N. Imanishi, a. Hirano, M. B. Phillipps, Y. Takeda, and O. Yamamoto, “A Super High Lithium Ion Conducting Solid Electrolyte of Grain Boundary Modified Li1.4Ti1.6 Al0.4(PO4)3,” J. Electrochem. Soc., vol. 159, no. 4, p. A342, 2012.
- M. Schroeder, S. Glatthaar, and J. R. Binder, “Influence of spray granulation on the properties of wet chemically synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) powders,” Solid State Ionics, vol. 201, no. 1, pp. 49–53, Oct. 2011.
- [M. Kotobuki, M. Koishi, and Y. Kato, “Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method,” Ionics (Kiel)., vol. 19, no. 12, pp. 1945–1948, Oct. 2013.
- M. Kotobuki and M. Koishi, “Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources,” Ceram. Int., vol. 39, no. 4, pp. 4645–4649, May 2013.
- G. B. Kunshina, O. G. Gromov, E. P. Lokshin, and V. T. Kalinnikov, “Preparation of powders and films of the lithium ion conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3,” Inorg. Mater., vol. 49, no. 1, pp. 95–100, Dec. 2012.
- S. Breuer, D. Prutsch, Q. Ma, V. Epp, F. Preishuber-Pflügl, F. Tietz, and M. Wilkening, “Separating bulk from grain boundary Li ion conductivity in the sol–gel prepared solid electrolyte Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3,” J. Mater. Chem. A, vol. 3, no. 42, pp. 21343–21350, 2015.
- B.O. Linova , S.D. Kobylianska , A.G. Bilous , А.V. Ragulya , I.O. Dulina, "SYNTHESIS OF Li1.3Al0.3Ti1.7(PO4)3 FILMS WITH NASICON STRUCTURE BY «TАPE CASTING» METHOD," Chemistry, Physics and Technology of Surface, vol. 7, no. 4, pp. 389-394, 2016.
- Leopold Hallopeau, Damien Bregiroux,, Gwenaëlle Rousse, David Portehault, Philippe Stevens, Gwenaëlle Toussaint, Christel Laberty-Robert, "Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte," Journal of Power Sources, no. 378, p. 48–52, 2018.
- Shicheng Yu, Andreas Mertens, Xin Gao, Deniz Cihan Gunduz, "Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte," Functional Materials Letters, vol. 9, no. 5, pp. 1650066-6, 2016.
- M. Gellert, K. I. Gries, C. Yada, F. Rosciano, K. Volz, and B. Roling, “Grain Boundaries in a Lithium Aluminum Titanium Phosphate-Type Fast Lithium Ion Conducting Glass Ceramic: Microstructure and Nonlinear Ion Transport Properties,” J. Phys. Chem., vol. 116, pp. 22675–22678, 2012.
- E. C. Bucharsky, K. G. Schell, a. Hintennach, and M. J. Hoffmann, “Preparation and characterization of sol–gel derived high lithium ion conductive NZP-type ceramics Li1+x AlxTi2−x(PO4)3,” Solid State Ionics, vol. 274, pp. 77–82, Jun. 2015.
- Qianli Ma, Qi Xu, Chih-Long Tsai, Frank Tietz, Olivier Guillon, "A Novel Sol–Gel Method for Large-Scale Production of Nanopowders: Preparation of Li1.5Al0.5Ti1.5(PO4)3 as an Example," Journal of the American Ceramic Society, vol. 99, no. 2, pp. 410-414, 2016.
- J. YANG, "Synthesis and Characterizations of Lithium Aluminum Titanium Phosphate (Li1+xAlxTi2-x(PO4)3) Solid Electrolytes for All-Solid-State Li-ion Batteries," Wright State University, Dayton, 2017.
- B. Le Gorrec and C. Montella, Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS. 2013, p. 5.
- V. T. Gromov, O.G., Kunshina, G.B., Kuz’min, A.P., Kalinnikov, “Ionic conductivity of solid electrolytes based on Li1.3Al0.3Ti1.7(PO4)3,” Russ. J. Appl. Chem., vol. 69, no. 3, pp. 385–388, 1996.
- [C.-M. Chang, Y. Il Lee, S.-H. Hong, and H.-M. Park, “Spark Plasma Sintering of LiTi2(PO4)3-Based Solid Electrolytes,” J. Am. Ceram. Soc., vol. 88, no. 7, pp. 1803–1807, Jul. 2005.
- S.-J. L.Kang, Sintering Densification,GrainGrowth, and Microstructure. Burlington: Elsevier, 2005, pp. 39–74.
- S.-J. L. Kang, “Normal and Abnormal Grain Growth in Polycrystals,” DAEJEON, 2009.
|