تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,431 |
تعداد دریافت فایل اصل مقاله | 5,597,214 |
Thermodynamic study of (pb2+) removal by adsorption onto modified magnetic Graphene Oxide with Chitosan and Cysteine | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 6، دوره 4، شماره 3 - شماره پیاپی 14، آبان 2019، صفحه 73-94 اصل مقاله (1.03 M) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Ghazaleh Ramezani* 1؛ Bizhan Honarvar1؛ masoomeh emadi2 | ||
1Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University,Marvdasht, Iran | ||
2Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran | ||
تاریخ دریافت: 04 اردیبهشت 1398، تاریخ بازنگری: 04 خرداد 1398، تاریخ پذیرش: 21 خرداد 1398 | ||
چکیده | ||
A new modified magnetic Graphene Oxide with Chitosan and Cysteine was synthesized for removing Pb2+ ions from aqueous solution. The properties of this adsorbent were characterized by Field Emission Scanning Electron Microscopy (FESEM), Vibrating Sample Magnetometer (VSM) and Energy Dispersive Analysis System of X-ray (EDAX). Physicochemical parameters such as effect of pH, contact time, adsorbent dosage and initial concentration of Pb 2+ was also studied. The results showed that the maximum capacity of absorbent in Lead ions adsorption (at Equilibrium concentration of 120 ppm) occurred at pHOptimum= 5.75, tOptimum= 30 min and adsorbent 85.4 mg/g dosage=0.1 gr. Maximum empirical adsorption capacity (qmax) was calculated 85.4 mg/g. The thermodynamic parameters (ΔHᵒ, ΔGᵒ and ΔSᵒ) showed that the adsorption process of Pb 2+ on modified magnetic Graphene Oxide with Chitosan and Cysteine was endothermic and spontaneous. Removal percentage was reduced to 15% after five stages of Sorption/desorption studies. So, modified magnetic Graphene Oxide with Chitosan and Cysteine can be used as a complementary process for removal of Pb2+ ions from water and wastewater. | ||
کلیدواژهها | ||
Magnetic Graphene Oxide؛ Surface modification؛ Nanoparticles؛ Removal of lead؛ Adsorption thermodynamics | ||
مراجع | ||
[1] H. Ramezani, M. Sharif and A.K Shokooh. Graphene-Based Polymer Nanocomposites. Polymerization Quarterly. (2015) 86–107. Available:http://basparesh.ippi.ac.ir/article_1149_dca2849d5ace80b335142 9fbf19a064e.pdf [2] M. Khazaei, S. Nasseri, M.R. Ganjali, M. Khoobi, R. Nabizadeh, E. Gholibegloo and S. Nazmara. Selective Removal of Lead Ions from Aqueous Solutions using 1, 8-Dihydroxyanthraquinone (DHAQ) Functionalized Graphene Oxide; Isotherm, Kinetic and Thermodynamic Studies. RSC Advances. 8(11) (2018)5685-5694. Available: https://pubs.rsc.org/en/content/articlehtml/2018/ra/c7ra13603j [3] R. Seenivasan, W.J. Chang and S. Gunasekaran. Highly Sensitive Detection and Removal of Lead Ions in Water using Cysteine-Functionalized Graphene Oxide /Polypyrrole Nanocomposite Film Electrode. ACS applied materials & interfaces.7(29) (2015)15935-15943. Available: https://pubs.acs.org/doi/abs/10.1021/acsami.5b03904 [4] D.Vilela, J. Parmar, Y. Zeng, Y.Zhao and S. Sánchez. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water. Nano letters.16(4) (2016) 2860-2866. Available: https://pubs.acs.org/doi/full/10.1021/acs.nanolett.6b00768 [5] D. Mehta, S. Mazumdar and S.K. Singh. Magnetic Adsorbents for the Treatment of Water/ Wastewater. Journal of Water Process Engineering. 100(7) (2015) 244-265. Available: https://www.sciencedirect.com/science/article/pii/S221471441530026X [6] H. Rahimi. Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure. Journal of Optoelectronical Nanostructures. 3(4) (2018) 45-58 Available: http://jopn.miau.ac.ir/article_3259.html [7] A. Abdykian and Z. Safi. Finding Electrostatics Modes in Metal Thin Films by using of Quantum Hydrodynamic Model. Journal of Optoelectronical Nanostructures.1(3) (2016) 43-50. Available: http://jopn.miau.ac.ir/article_2193.html [8] M. Nayeri, P. keshavarzian, M. Nayeri. A Novel Design of Penternary Inverter Gate Based on Carbon Nano Tube. Journal of Optoelectronical Nanostructures. 3(1) (2018) 15-26 Available: http://jopn.miau.ac.ir/article_2820.html [9] K.S. Novoselov, V.I. Fal, L. Colombo, P.R. Gellert, M.G. Schwab and K. Kim. A Roadmap for Graphene. Nature.490(7419) (2012)192-200. Available: https://www.nature.com/articles/nature11458 [10] A. Abdikian, G. Solookinejad, Z. Safi. Electrostatics Modes in Mono-Layered Graphene. Journal of Optoelectronical Nanostructures. 1(2) (2016) 1-8. Available: http://jopn.miau.ac.ir/article_2044.html [11] D.R. Dreyer, S. Park, C.W. Bielawski and R.S. Ruoff. The Chemistry of Graphene Oxide. Chemical Society Reviews.39(1) (2010) 228-240. Available: https://pubs.rsc.org/en/content/articlehtml/2010/cs/b917103g [12] D.R. Dreyer, R.S. Ruoff and C.W. Bielawski. From Conception to Realization: an Historial Account of Graphene and Some Perspectives for its Future. Angewandte Chemie International Edition.49(49) (2010) 9336-9344. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.201003024 [13] S. Pei and H.M. Cheng. The Reduction of Graphene Oxide. Carbon.50(9) (2012) 3210-3228. Available: https://www.sciencedirect.com/science/article/pii/S0008622311008967 [14] K. Kalantari, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M. Basri and R. Khandanlou. Rapid and High Capacity Adsorption of Heavy Metals by Fe3O4/Montmorillonite Nanocomposite using Response Surface Methodology: Preparation, Characterization, Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study. Journal of the Taiwan institute of Chemical Engineers.49 (2015) 192-198. Available: https://www.sciencedirect.com/science/article/pii/S1876107014003265 [15] Handbook of Membranes for Industrial Wastewater Recovery and Re-us, 1st ed., Elsevier Science & Technology Books,2003 ,7-9. [16] T. Kuilla, S. Bhadra, D.Yao, N.H. Kim, S. Bose and J.H. Lee. Recent Advances in Graphene Based Polymer Composites. Progress in polymer science.35(11) (2010) 1350-1375. Available: https://www.sciencedirect.com/science/article/pii/S0079670010000699 [17] Y.A. El-Reash. Magnetic Chitosan Modified with Cysteine-Glutaraldehyde as Adsorbent for Removal of Heavy Metals From Water. Journal of Environmental Chemical Engineering. 4 (4) (2016) 3835-3847. Available: https://www.sciencedirect.com/science/article/pii/S2213343716303001 [18] V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang and K.S. Kim. Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal. ACS Nano. 4(7) (2010) 3979-3986. Available: https://pubs.acs.org/doi/abs/10.1021/nn1008897 [19] S. Tripathi, G.K. Mehrotra and P.K Dutta. Preparation and Physicochemical Evaluation of Chitosan/poly (vinyl alcohol)/Pectin Ternary Film for Food-Packaging Applications. Carbohydrate Polymers.79(3) (2010)711-716. Available: https://www.sciencedirect.com/science/article/pii/S0144861709005335 [20] L. Qi and Z. Xu. Lead Sorption from Aqueous Solutions on Chitosan Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 251(1) (2004)183-190. Available: https://www.sciencedirect.com/science/article/pii/S0927775704006995 [21] K.A. Janes, M.P. Fresneau, A. Marazuela, A. Fabra and M.J. Chitosan Nanoparticles as Delivery Systems for Doxorubicin. Alonso. Journal of controlled Release. 73(2) (2001) 255-267. Available: https://www.sciencedirect.com/science/article/pii/S0168365901002942 [22] Y.A. El-Reash. Magnetic Chitosan Modified with Cysteine-Glutaraldehyde as Adsorbent for Removal of Heavy Metals from Water. Journal of Environmental Chemical Engineering. 4(4) (2016) 3835-3847. Available: https://www.sciencedirect.com/science/article/pii/S2213343716303001 [23] D.D. Lefebvre and C. Edwards, Decontaminating Heavy Metals from Water using Photosynthetic Microbes, In Emerging Environmental Technologies, 2 (2009) 57-73. Available: https://link.springer.com/chapter/10.1007/978-90-481-3352-9_3 [24] R. Wilfried E. Structure and Function of Metal Chelators Produced by Plants. Journal of Cell biochemistry and biophysics. 31(1) (1999) 19-48. Available: https://link.springer.com/article/10.1007/BF02738153 [25] G. Scarano and E. Morelli. Properties of Phytochelatin-Coated CdS Nanocrystallites Formed in a Marine Phytoplanktonic Alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Journal of Plant Science.165(4) (2003) 803-810. Available: https://www.sciencedirect.com/science/article/pii/S0168945203002747 [26] M.R. Lasheen, I.Y. El-Sherif., M.E. Tawfik, S.T. El-Wakeel and M.F. El-Shahat. Preparation and Adsorption Properties of Nano Magnetite Chitosan Films for Heavy Metal Ions from Aqueous Solution. Journal of Materials Research Bulletin.80 (2016) 344-350. Available: https://www.sciencedirect.com/science/article/pii/S0025540816301696 [27] R.A. Khera, M. Iqbal, S. Jabeen, M. Abbas,A. Nazir, J. Nisar, A. Ghaffar, G.A. Shar and M.A. Tahir. Adsorption Efficiency of Pitpapra under Single and Binary Metal Systems. Journal of Surfaces and Interfaces.14 (2019)138-145 Available: https://www.sciencedirect.com/science/article/pii/S2468023018305571 [28] C.P. Poole Jr, F.J. Owens, Introduction to Nanotechnology, in Introduction to Nanotechnology,1st ed.Chicago, 2003. [29] C.H. Yang.J. Derivation of the Freundlich Adsorption Isotherm from Kinetics. Journal of chemical Education.Colloid interface Sci.86(11) (1998) 379-387. Available: https://pubs.acs.org/doi/abs/10.1021/ed086p1341 | ||
آمار تعداد مشاهده مقاله: 443 تعداد دریافت فایل اصل مقاله: 341 |