تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,435 |
تعداد دریافت فایل اصل مقاله | 5,597,215 |
Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 2، دوره 5، شماره 3 - شماره پیاپی 19، آبان 2020، صفحه 17-38 اصل مقاله (2.18 M) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
masoomeh emadi* 1؛ Bizhan Honarvar2؛ mehdi nafar2؛ Asghar Emadi2 | ||
1Department of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran | ||
2Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran | ||
تاریخ دریافت: 09 اسفند 1398، تاریخ بازنگری: 03 مرداد 1399، تاریخ پذیرش: 14 مرداد 1399 | ||
چکیده | ||
Supercapacitors have attracted much attention in the field of electrochemical energy storage. However, material preparation and stability limit their applications in many fields. Herein, a reduced graphene oxide@phosphorus (rGO@P) electrode was prepared using a simple inexpensive method. The new graphene structure (rGO@P) was characterized by X-ray diraction, Fourier transform infrared spectroscopy, scanning electron microscopy and Energy-dispersive X-ray spectroscopy. Electrode showed excellent performances (307 F g−1), which seem to be the highest among many other rGO@P-based electrodes reported so far. It also has an excellent cyclic stability up to 95% after 600 consecutive charge/discharge tests. So, the ease of the synthesis method and excellent performance of the prepared electrode materials mat have significant potential for energy storage applications. | ||
کلیدواژهها | ||
Reduced Graphene Oxide؛ Supercapacitor؛ Electrode؛ Phosphorous Functionalization | ||
مراجع | ||
[1] Z. Song, H. Zhou. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy Environ. Sci. 6 (2013) 2280–2301. Available: https://pubs.rsc.org/en/content/articlelanding/2013/ee/c3ee40709h#!divAbst ract. [2] B. Dunn, H. Kamath, J. M. Tarascon. Electrical Energy Storage for the Grid: A Battery of Choices. Science (80) 334 (2011) 928–935. Available: https://science.sciencemag.org/content/334/6058/928.full Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus * 35 [3] P.A. Owusu, S. Asumadu-Sarkodie. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3 (2016) 1167990-1167999. Available: https://www.tandfonline.com/doi/full/10.1080/23311916.2016.1167990. [4] M.S. Lamraski, S. Babaee, S.M. Pourmortazavi. Study of Optical Properties, Thermal Kinetic Decomposition and Stability of Coated PETNLitholrubine nano-Composite via Solvent / None-Solvent Method Using Taguchi Experimental Design. J. Optoelectron. Nanostructures. 4 (2019) 11–15. Available: http://jopn.miau.ac.ir/article3759.html. [5] A. Vlad, N. Singh, J. Rolland, S. Melinte, P. Ajayan, J. F. Gohy. Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 4 (2014) 4315-4325. Available: https://www.nature.com/articles/srep04315 [6] J. Libich, J. Máca, J. Vondrák, O. Čech, M. Sedlaříková. Supercapacitors: Properties and applications. J. Energy Storage. 17 (2018) 224–227. Available: https://www.sciencedirect.com/science/article/abs/pii/S2352152X18301634 . [7] M. Xu, Y. Ma, R. Liu, Y. Liu, Y. Bai, X. Wang, Y. Huang, G. Yuan. Melamine sponge modified by graphene/polypyrrole as highly compressible supercapacitor electrodes. Synth. Met. 267 (2020) 116461-116465. Available: https://www.sciencedirect.com/science/article/abs/pii/S0379677920303246. [8] T. Selvaraj, V. Perumal, S.F. Khor, L.S. Anthony, S.C.B. Gopinath, N. Muti Mohamed. The recent development of polysaccharides biomaterials and their performance for supercapacitor applications. Mater. Res. Bull. 126 (2020) 110839-110845. Available: https://www.sciencedirect.com/science/article/pii/S0025540819332258. [9] N. Zhao, L. Deng, D. Luo, P. Zhang. One-step fabrication of biomassderived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl. Surf. Sci. 526 (2020) 146696- 146698. 36 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3 Available: https://www.sciencedirect.com/science/article/abs/pii/S0169433220314537. [10] M. Soltani, J. Ronsmans, S. Kakihara, J. Jaguemont, P. Van den Bossche, J. van Mierlo, N. Omar. Hybrid battery/lithium-ion capacitor energy storage system for a pure electric bus for an urban transportation application. Appl. Sci. 8 (2018) 1176-1195. Available: https://www.mdpi.com/2076-3417/8/7/1176. [11] K. Leng, F. Zhang, L. Zhang, T. Zhang, Y. wu, Y. Lu, Y. Huang, Y. Chen. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 6 (2013) 581-592. Available: https://link.springer.com/article/10.1007/s12274-013-0334-6. [12] M.P. Down, S.J. Rowley-Neale, G.C. Smith, C.E. Banks. Fabrication of Graphene Oxide Supercapacitor Devices. ACS Appl. Energy Mater. 1 (2018) 707–714. Available: https://pubs.acs.org/doi/abs/10.1021/acsaem.7b00164. [13] A. Moftakharzadeh, B.A. Aghda, M. Hosseini. Noise Equivalent Power Optimization of Graphene- Superconductor Optical Sensors in the Current Bias Mode. J. Optoelectron. Nanostrucre. 3 (2018) 1–12. Available: http://jopn.miau.ac.ir/article 3040.html. [14] G. Ramezani, B. Honarvar, M. Emadi. Thermodynamic study of ( pb 2 + ) removal by adsorption onto modified magnetic Graphene Oxide with Chitosan and Cysteine. J. Optoelectron. Nanostructures. 4 (2019) 12–17. Available: http://jopn.miau.ac.ir/article_3621.html. [15] T. Kesavan, R. Aswathy, I. Raj, P. Kumar, P. Ragupathy. Nitrogen-Doped Graphene as Electrode Material with Enhanced Energy Density for Next- Generation Supercapacitor Application. ECS J. Solid State Sci. Technol. 4 (2015) 1–5. Available: https://iopscience.iop.org/article/10.1149/2.0281512jss/meta. [16] F. Tuzluca, Y. Yesilbag, M. Ertuğrul. Synthesis of ultra-long boron nanowires as supercapacitor electrode material. Appl. Surf. Sci. 493 (2019) 787-794. Available: https://www.sciencedirect.com/journal/applied-surfacescience/ vol/493/suppl/C. Increasing Supercapacitor Features Using Reduced Graphene Oxide@Phosphorus * 37 [17] W.S.V. Lee, M. Leng, M. Li, X.L. Huang, J.M. Xue. Sulphurfunctionalized graphene towards high performance supercapacitor. Nano Energy. 12 (2015) 250–257. Available: https://www.sciencedirect.com/science/article/abs/pii/S2211285514002997. [18] K. Prasannan, N. Rajalakshmi, K.S. Dhathathreyan. Phosphorus-Doped Exfoliated Graphene for Supercapacitor Electrodes. J. Nanosci. Nanotechnol. 13 (2013) 1746–1751. Available: https://www.ingentaconnect.com/content/asp/jnn/2013/00000013/00000003 /art00019;jsessionid=18li36v6fsq8r.x-ic-live-03. [19] S. Some, J. Kim, K. Lee, A. Kulkarni, Y. Yoon, S. Lee, T. Kim, H. Lee. Highly Air-Stable Phosphorus-Doped n-Type Graphene Field-Effect Transistors. Adv. Mater. 24 (2012) 5481–5486. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201202255. [20] J. Song, Z. Yu, M.L. Gordin, S. Hu, R. Yi, D. Tang, T. Walter, M. Regula, D. Choi, X. Li, A. Manivannan, D. Wang. Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium- Ion Batteries. Nano Lett. 14 (2014) 6329–6335. https://doi.org/10.1021/nl502759z. Available: https://pubs.acs.org/doi/10.1021/nl502759z. [21] Z. Yu, J. Song, M.L. Gordin, R. Yi, D. Tang, D. Wang. Phosphorus- Graphene Nanosheet Hybrids as Lithium-Ion Anode with Exceptional High- Temperature Cycling Stability. Adv. Sci. 2 (2015)1400020-1400029. Available: https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201400020. [22] W.S. Hummers, R.E. Offeman. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 80 (1958) 1339-1340. Available: https://pubs.acs.org/doi/10.1021/ja01539a017. [23] A. Emadi, B. Honarvar, M. Emadi, M. Nafar. Supercapacitor Electrode. Formation Based on Thoil-Functionalized Graphene Oxide. Russian Journal of Applied Chemistry 93 (2020) 1160-1171. Available: https://link.springer.com/article/10.1134/S107042722008008X. [24] B. Zheng, T.-W. Chen, F.-N. Xiao, W.-J. Bao, X.-H. Xia. KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor. J. Solid State Electrochem. 17 (2013) 1809–1814. 38 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3 Available: https://link.springer.com/article/10.1007/s10008-013-2101-8. [25] M.B. Bakhshandeh, E. Kowsari. Functionalization of partially reduced graphene oxide by metal complex as electrode material in supercapacitor. Res. Chem. Intermed. 46 (2020) 2595–2612. Available: https://link.springer.com/article/10.1007%2Fs11164-020-04109- 8. [26] T.-S. He, X.-D. Yu, T.-J. Bai, X.-Y. Li, Y.-R. Fu, K.-D. Cai. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor. Ionics (Kiel). 26 (2020) 4103-4111. . Available: https://link.springer.com/article/10.1007%2Fs11581-020-03529- 1. [27] Z. Chen, Y. Jiang, B. Xin, S. Jiang, Y. Liu, L. Lin. Electrochemical analysis of conducting reduced graphene oxide/polyaniline/polyvinyl alcohol nanofibers as supercapacitor electrodes. J. Mater. Sci. Mater. Electron. 31 (2020) 5958–5965. Available: https://link.springer.com/article/10.1007%2Fs10854-020-03204- 1. [28] W. Song, Z. Zhang, P. Wan, M. Wang, X. Chen, C. Mao. Low temperature and highly efficient oxygen/sulfur dual-modification of nanoporous carbon under hydrothermal conditions for supercapacitor application. J. Solid State Electrochem. 24 (2020) 761–770. Available: https://link.springer.com/article/10.1007/s10008-019-04492- 2?shared-article-renderer. [29] M.H. Pham, A. Khazaeli, G. Godbille-Cardona, F. Truica-Marasescu, B. Peppley, D.P.J. Barz. Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. J. Energy Storage. 28 (2020) 101210-101220. | ||
آمار تعداد مشاهده مقاله: 236 تعداد دریافت فایل اصل مقاله: 367 |