تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,429 |
تعداد دریافت فایل اصل مقاله | 5,597,212 |
Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect in 2D Photonic Crystal | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 7، دوره 5، شماره 3 - شماره پیاپی 19، آبان 2020، صفحه 103-114 اصل مقاله (764.76 K) | ||
نوع مقاله: Articles | ||
نویسندگان | ||
Farzan Khatib* 1؛ Mohsen Shahi2 | ||
1Department of Electrical Engineering, Mashhad Branch, Islamic Azad Uiversity, Mashhad, Iran | ||
2Department of Electrical Engineering, Mashhad Branch, Islamic azad University, Mashhad, Iran | ||
تاریخ دریافت: 17 بهمن 1398، تاریخ بازنگری: 08 آبان 1399، تاریخ پذیرش: 16 آبان 1399 | ||
چکیده | ||
This paper deals with the design and simulation of all-optical 4×2 encoder using the wave interference effect in photonic crystals. By producing 4 optical waveguides as input and two waveguides as output, the given structure was designed. The size of the designed structure is 133.9 μm2. The given all-optical encoder has a contrast ratio of 13.2 dB, the response time of 0.45 ps, and also the bit transfer rate of 2.2 Tbit/s. The results from these structures suggest the high flexibility of the structures, their resolution rates, and appropriate response time relative to that of other structures in this rank as well as their applicability in terms of dividing. To elicit the optical band gap rage for structure design, the plane wave expansion method and also the finite difference time domain methods were used to investigate the results from designed structures. | ||
کلیدواژهها | ||
Photonic Crystal؛ Photonic Bandgap؛ Logic Gate؛ Encoder؛ Interface | ||
مراجع | ||
[1]. G. Grasso, A. Righetti, P. Ottolenghi, and F. Donati. Optical telecommunications system. U.S. Patent, 6,191,854, (2001). Available: https://patents.google.com/patent/US6191854B1 [2]. V. Fallahi, and M. Seifouri. A new design of a 4-channel optical demultiplexer based on photonic crystal ring resonator using a modified Y-branch. Optica Applicata, 48(2) (2018). Available: http://opticaapplicata.pwr.edu.pl/article.php?id=2018200191 [3]. T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur. Multimode interference-based photonic crystal waveguide power splitter. Journal of lightwave technology, 22(12) (2004) 2842. Available: https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-22-12-2842 [4]. C. Liu, L. Yang, W. Su, W. Famei, T. Sun, L. Qiang, M. Haiwei, and P. K. Chu. Numerical analysis of a photonic crystal fiber based on a surface plasmon resonance sensor with an annular analyte channel. Optics Communications, 382 (2017) 162-166. Available: https://doi.org/10.1016/j.optcom.2016.07.031 [5]. I. Ouahab, and R. Naoum. A novel all optical 4× 2 encoder switch based on photonic crystal ring resonators. Optik, 127(19) (2016) 7835-7841. Available: https://doi.org/10.1016/j.ijleo.2016.05.080 [6]. A. Kumar, and M. Sarang. All optical NOT and NOR gates using interference in the structures based on 2D linear photonic crystal ring resonator. Optik, 179 (2019) 237-243. Available: https://doi.org/10.1016/j.ijleo.2018.10.188 [7]. T. S. Mostafa, A. M. Nazmi, and M. El-Sayed. Ultracompact ultrafast-switching-speed all-optical 4× 2 encoder based on photonic crystal. Journal of Computational Electronics, 18(1) (2019) 279-292. Available: https://doi.org/10.1007/s10825-018-1278-6 [8]. S. M. H. Jalali, M. Soroosh, and G. Akbarizadeh. Ultra-fast 1-bit comparator using nonlinear photonic crystalbased ring resonators. Journal 112 * Journal of Optoelectronical Nanostructures Summer 2020 / Vol. 5, No. 3 of Optoelectronical Nanostructures, 4(3) (2019) 59-72. Available: http://jopn.miau.ac.ir/article_3620.html [9]. M. Neisy, M. Soroosh, and K. Ansari-Asl. All optical half adder based on photonic crystal resonant cavities. Photonic Network Communications, 35(2) (2018) 245-250. Available: https://doi.org/10.1007/s11107-017-0736-6 [10]. A. Salimzadeh, and H. Alipour-Banaei. An all optical 8 to 3 encoder based on photonic crystal OR-gate ring resonators. Optics Communications, 410 (2018) 793-798. Available: https://doi.org/10.1016/j.optcom.2017.11.036 [11]. I. D. Block, L. L. Chan, and B. T. Cunningham. Photonic crystal optical biosensor incorporating structured low-index porous dielectric. Sensors and Actuators B: Chemical, 120(1) (2006) 187-193. Available: https://doi.org/10.1016/j.snb.2006.02.006 [12]. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu. Laser action from two-dimensional distributed feedback in photonic crystals. Applied Physics Letters, 74(1) (1999) 7-9. Available: https://doi.org/10.1063/1.123116 [13]. V. Fallahi, M. Seifouri, and M. Mohammadi. A new design of optical add/drop filters and multi-channel filters based on hexagonal PhCRR for WDM systems. Photonic Network Communications, 37(1) (2019) 100-109. Available: https://doi.org/10.1007/s11107-018-0797-1 [14]. B. Miao, C. Caihua, A. Sharkway, S. Shouyuan, and D. W. Prather. Two bit optical analog-to-digital converter based on photonic crystals. Optics express, 14(17) (2006) 7966-7973. Available: https://doi.org/10.1364/OE.14.007966 [15]. V. Fallahi, M. Mohammadi, and M. Seifouri. Design of Two 8-Channel Optical Demultiplexers Using 2D Photonic Crystal Homogeneous Ring Resonators. Fiber and Integrated Optics, 38(5) (2019) 271-284. Available: https://doi.org/10.1080/01468030.2019.1652868 [16]. I. Park, L. Hyun-Shik, K. Hyun-Jun, M. Kyung-Mi, L. Seung-Gol, O. Beom-Hoan, S. Park, and L. El-Hang. Photonic crystal power-splitter based on directional coupling. Optics Express, 12(15) (2004) 3599-3604. Available: https://doi.org/10.1364/OPEX.12.003599 [17]. H. Seif-Dargahi. Ultra-fast all-optical encoder using photonic crystal-based ring resonators. Photonic Network Communications 36 (2) (2018)272. Availabe: https://doi.org/10.1007/s11107-018-0779-3 Ultra-Fast All-Optical Symmetry 4×2 Encoder Based on Interface Effect … * 113 [18]. S. Gholamnejad, and M. Zavvari. Design and analysis of all-optical 4–2 binary encoder based on photonic crystal. Optical and Quantum Electronics, 49(9) (2017) 302. Available: https://doi.org/10.1007/s11082-017-1144-y [19]. Parandin, Fariborz. High contrast ratio all-optical 4× 2 encoder based on two-dimensional photonic crystals. Optics & Laser Technology 113 (2019): 447-452. Available: https://doi.org/10.1016/j.optlastec.2019.01.003 [20]. F. Mehdizadeh, M. Soroosh, and H. Alipour-Banaei. Proposal for 4-to-2 optical encoder based on photonic crystals. IET Optoelectronics, 11(1) (2016) 29-35. Available: 10.1049/iet-opt.2016.0022 [21]. M. H. Kashtiban, R. S. Nadooshan, and Hamed Alipour-Banaei. A novel all optical reversible 4× 2 encoder based on photonic crystals. Optik, 126(20) (2015) 2368-2372. Available: https://doi.org/10.1016/j.ijleo.2015.05.140 [22]. T. Daghooghi, M. Soroosh, and K. Ansari-Asl. A low-power all optical decoder based on photonic crystal nonlinear ring resonators. Optik, 174 (2018) 400-408. Available: https://doi.org/10.1016/j.ijleo.2018.08.090 [23]. V. Fallahi, and M. Seifouri. Novel structure of optical add/drop filters and multi-channel filter based on photonic crystal for using in optical telecommunication devices. Journal of Optoelectronical Nanostructures, 4(2) (2019): 53-68. Available: http://jopn.miau.ac.ir/article_3478.html [24]. Z. Rashki, Novel Design for Photonic Crystal Ring Resonators Based Optical Channel Drop Filter. Journal of Optoelectronical Nanostructures, 3(3) (2018) 59-78. Available: http://jopn.miau.ac.ir/article_3043.html [25]. Moniem, Tamer A. All-optical digital 4× 2 encoder based on 2D photonic crystal ring resonators. Journal of Modern Optics 63(8) (2016) 735-741. Available: https://doi.org/10.1080/09500340.2015.1094580 | ||
آمار تعداد مشاهده مقاله: 234 تعداد دریافت فایل اصل مقاله: 326 |