تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,429 |
تعداد دریافت فایل اصل مقاله | 5,597,212 |
Supercontinuum Generation in Silica Plasmonic Waveguide by Bright Soliton | ||
Journal of Optoelectronical Nanostructures | ||
دوره 6، شماره 4 - شماره پیاپی 24، بهمن 2021، صفحه 109-136 اصل مقاله (1.54 M) | ||
نوع مقاله: Articles | ||
شناسه دیجیتال (DOI): 10.30495/jopn.2022.28937.1236 | ||
نویسندگان | ||
Maryam Dehghani1؛ Mohsen Hatami* 2؛ Abdolrasoul Gharaati1 | ||
1Physics Department, Payame Noor University, Tehran, Iran. | ||
2Facualty of Physics, Shiraz University of Technology, Shiraz, Iran. | ||
تاریخ دریافت: 20 شهریور 1400، تاریخ بازنگری: 22 آذر 1400، تاریخ پذیرش: 27 آذر 1400 | ||
چکیده | ||
We study the supercontinuum generation in a nonlinear silica single layer plasmonic waveguide. A major part of spectral broadening is related to soliton dynamics when an ultra-short pulse is launched in waveguide with anomalous GVD. Production of supercontinuum with 10th, 15th and 30th, orders bright solitons by considering all the nonlinear effects and dispersions i.e., inter-pulse Raman scattering, self-steepening, self-phase modulation, cross phase modulation, which indicates the existence of a supercontinuum propagation about 20 times broadening than initial width of input spectrum. Also, we consider the absorption effect of plasmonic waveguide by calculating propagation length from propagation constant. The propagation length of plasmonic is compared with the waveguide length and nonlinear length. At wavelength 1.22μm, the propagation length is obtained in the order of waveguide length which means one can consider the effect of absorption cannot alter the results. The nonlinear plasmonic waveguides are suitable for integrated photonics because of subwavelength confinement of plasmonic waveguides. | ||
کلیدواژهها | ||
nonlinear plasmonic waveguide؛ supercontinuum generation؛ nonlinear Raman scattering؛ self steepening | ||
مراجع | ||
[1] A.V. Husakou, J. Herrmann. Supercontinuum generation of higher order solitons by fission in photonic crystal fibers. Phys.Rev. Lett, 87, (2001) 203901. Available: https://doi.org/10.1103/PhysRevLett.87.203901 [2] J. Herrmann et al. Experimental evidence for supercontinuum generation by fission of higher order soliton in photonic fibers. Phys. Rev. Lett, 88, (2002) 173901. Available: https://doi.org/10.1103/PhysRevLett.88.173901 [3] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonics crystal fiber. Rev. Mod. Phys. 78, (2006) 1135–1184. Available: https://doi.org/10.1103/RevModPhys.78.1135 [4] A. M. Zheltikov. supercontinuum generation by ultrashort laser pulses. Phys–Uspekhi. 49, (2006) 605–628. Available: https://doi.org/10.3367/UFNr.0176.200606d.0623 [5] J. M. Dudley, J. R. Taylor. Ten years of nonlinear optics in photonic crystal fiber. Nature Photonics, 3, (2009) 85–90. Available: https://doi.org/10.1038/nphoton.2008.285 [6] Q. Lu, C. Zou, D. Chen, P. Zhou, G. Wu. Extreme light confinement and low loss in triangle hybrid plasmonic waveguide. Optics Communications, Vol. 319, (2014) 141–146. Available: https://doi.org/10.1016/j.optcom.2013.12.072 [7] Z. Muhammad, J. Alam, S. Aitchison, M. Mojahedi. A marriage of convenience: Hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev. 8, No. 3, (2014) 394–408. Available: https://doi.org/10.1002/lpor.201300168 [8] H. A. Atwater. The Promise of Plasmonics, Scientific American. Vol. 296, No. 4, (2007) 56-63. Available: doi:10.1038/scientificamerican0907-56sp [9] M. Dehghani, M. Hatami. Raman scattering and self‑steepening in nonlinear plasmonic waveguide pulse equation, Optical and Quantum Electronics Springer, (2020) 52:124. Available: https://doi.org/10.1007/s11082-020-2241-x [10] D. Rukhlenko, P. Asanka, P. Malin. Exact dispersion relation for nonlinear plasmonic waveguides. Phys. Rev. B. (2011). Available: https://doi.org/10.1103/PhysRevB.84.113409 [11] B. Sharma, R. Frontiera, A. Henry, E. Ringe, R. P. van Duyne. SERS: materials, applications, and the future. 15, (2012) 16–25. Available: https://doi.org/10.1016/S1369-7021(12)70017-2 [12] H. Zhao, Y. Li, G. Zhang. Study on the performance of bimetallic layer dielectric-loaded surface plasmon polariton waveguides. Journal of optics, (2011) 115501. Available: http://dx.doi.org/10.1088/2040-8978/13/11/115501 [13] R. Yang, M.A.G. Abushagur, Z. Lu. Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot. Opt. Express 16, (2008) 20142–20148. Available: https://doi.org/10.1364/OE.16.020142 [14] H. U. Yang, J. D’Archange, M. L. Sundheimer, E. Tucker, G. D. Boreman. Optical dielectric function of silver. Phys. Rev. 91, (2015) 1–11. Available: http://dx.doi.org/10.1103/PhysRevB.91.235137 [15] G.P. Agrawal. Nonlinear Fiber Optics. Sixth ed., Academic Press, USA. (2019). Available: https://doi.org/10.1016/B978-0-12-817042-7.00008-7 | ||
آمار تعداد مشاهده مقاله: 101 تعداد دریافت فایل اصل مقاله: 139 |