تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,418 |
تعداد دریافت فایل اصل مقاله | 5,597,207 |
Assessment of Mixed Tin-Lead Perovskite as the Absorber Material for Fabrication of Highly Sensitive Broadband Photodetector | ||
Journal of Optoelectronical Nanostructures | ||
دوره 7، شماره 4 - شماره پیاپی 28، بهمن 2022، صفحه 29-48 اصل مقاله (898.01 K) | ||
نوع مقاله: Articles | ||
شناسه دیجیتال (DOI): 10.30495/jopn.2022.30624.1268 | ||
نویسندگان | ||
Kosar Jafarizade1؛ Zahra Hosseini* 2؛ Hossein Amanati Manbar1 | ||
1Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran. | ||
2Faculty Of Advanced Technologies, Shiraz University, Shiraz, Iran | ||
تاریخ دریافت: 30 خرداد 1401، تاریخ بازنگری: 04 مهر 1401، تاریخ پذیرش: 24 شهریور 1401 | ||
چکیده | ||
The relatively large bandgaps of the methylammonium lead halide perovskites are the major obstacle to achieving broadband response in the lead-based perovskite photodetectors. Partial or total substitution of lead with tin leads to smaller bandgaps for perovskite materials. Here, we investigated the application of a mixed tin-lead perovskite material, (FASnI3)0.6(MAPbI3)0.4, with small bandgap of 1.24 eV as the absorber material in a perovskite photodetector. The device simulation is performed by using SCAPS simulation software. The effect of different parameters such as absorber layer quality and thickness, interface defects, doping concentration and carrier mobility on the performance of the device is studied. The simulation results clarify that the parameters optimization can result in achieving a self-powered photodetector with broad spectral response from 300 to 1050 nm wavelength, a high responsivity of 0.6 A W-1 at 930 nm, almost flat detectivity of over 1013 Jones and a wide linear dynamic range. We believe this study can provide theoretical guidance for the design of highly sensitive, broadband, mixed tin-lead perovskite photodetectors. | ||
کلیدواژهها | ||
Broadband؛ High Sensitivity؛ Mixed Tin-Lead Perovskite؛ Photodetector؛ Self-Powered | ||
مراجع | ||
[1] L. Dou, Y.M. Yang, J. You, Z. Hong, W.H. Chang, G. Li, Y. Yang, Solution- processed hybrid perovskite photodetectors with high detectivity, Nat. Commun. 5 (2014) 1–6. doi:10.1038/ncomms6404. [2] H.R.S. Saman Salimpour, Impressive Reduction of Dark Current in InSb Infrared Photodetector to achieve High Temperature Performance, J. Optoelectron. Nanostructures. 3 (2018) 81–96. doi:20.1001.1.24237361.2018.3.4.7.4. [3] H.G.-B.-O. Somaye Jalaei, Javad Karamdel, Black Phosphorus Mid-Infrared Photodetector with Circular Au/Pd Antennas, J. Optoelectron. Nanostructures. 7 (2022) 37–54. doi:10.30495/JOPN.2022.29104.1239. [4] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, D. Yang, Trap Assisted Bulk Silicon Photodetector with High Photoconductive Gain, Low Noise, and Fast Response by Ag Hyperdoping, Adv. Opt. Mater. 6 (2018) 1–8. doi:10.1002/adom.201700638. [5] I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys. 89 (2001) 5815– 5875. doi:10.1063/1.1368156. [6] C. Liu, K. Wang, C. Yi, X. Shi, P. Du, A.W. Smith, A. Karim, X. Gong, Ultrasensitive solution-processed perovskite hybrid photodetectors, J. Mater. Chem. C. 3 (2015) 6600–6606. doi:10.1039/c5tc00673b. [7] K. Wang, C. Liu, C. Yi, L. Chen, J. Zhu, R.A. Weiss, X. Gong, Efficient Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering, Adv. Funct. Mater. 25 (2015) 6875–6884. doi:10.1002/adfm.201503160. [8] H.-S. Rao, W.-G. Li, B.-X. Chen, D.-B. Kuang, C.-Y. Su, In Situ Growth of 120 cm2 CH3NH3PbBr3 Perovskite Crystal Film on FTO Glass for Narrowband-Photodetectors, Adv. Mater. 29 (2017) 1602639. doi:10.1002/adma.201602639. [9] M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science. 338 (2012) 643–647. doi:10.1126/science.1228604. [10] Y. Fang, Q. Dong, Y. Shao, Y. Yuan, J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination, Nat. Photonics. 9 (2015) 679–686. doi:10.1038/nphoton.2015.156. [11] R. Liu, J. Zhang, H. Zhou, Z. Song, Z. Song, C.R. Grice, D. Wu, L. Shen, H. Wang, Solution-Processed High-Quality Cesium Lead Bromine Perovskite Photodetectors with High Detectivity for Application in Visible Light Communication, Adv. Opt. Mater. 8 (2020) 1–7. doi:10.1002/adom.201901735. [12] H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Y. Zhu, R. Liu, H. Wang, Y. Yan, Self-powered CsPbBr3 nanowire photodetector with a vertical structure, Nano Energy. 53 (2018) 880–886. doi:10.1016/j.nanoen.2018.09.040. [13] M.M.A. Shahram Rafiee Rafat, Zahra Ahangari, Performance Investigation of a Perovskite Solar Cell with TiO2 and One Dimensional ZnO Nanorods as Electron Transport Layers, J. Optoelectron. Nanostructures. 6 (2021) 75– 90. doi: 10.30495/JOPN.2021.28208.1224. [14] A.N. Seyyed Reza Hosseini, Mahsa Bahramgour, Nagihan Delibas, A Simulation Study around Investigating the Effect of Polymers on the Structure and Performance of a Perovskite Solar Celle, J. Optoelectron. Nanostructures. 7 (2022) 37–50. doi:10.30495/JOPN.2022.29720.1252. [15] A.K.S. Davood Jalalian, Abbas Ghadimi, Investigation of the Effect of Band Offset and Mobility of Organic/Inorganic HTM Layers on the Performance of Perovskite Solar Cells, J. Optoelectron. Nanostructures. 5 (2020) 65–78. doi: 20.1001.1.24237361.2020.5.2.6.3. [16] D. Wu, H. Zhou, Z. Song, M. Zheng, R. Liu, X. Pan, H. Wan, J. Zhang, H. Wang, X. Li, H. Zeng, Welding Perovskite Nanowires for Stable, Sensitive, Flexible Photodetectors, ACS Nano. 14 (2020) 2777–2787. doi:10.1021/acsnano.9b09315. [17] Z. Cheng, K. Liu, J. Yang, X. Chen, X. Xie, B. Li, Z. Zhang, L. Liu, C. Shan, D. Shen, High-Performance Planar-Type Ultraviolet Photodetector Based on High-Quality CH3NH3PbCl3 Perovskite Single Crystals, ACS Appl. Mater. Interfaces. 11 (2019) 34144–34150. doi:10.1021/acsami.9b09035. [18] Y. Fang, J. Huang, Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction, Adv. Mater. 27 (2015) 2804–2810. doi:10.1002/adma.201500099. [19] W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.T. Lee, J. Jie, Aligned Single-Crystalline Perovskite Microwire Arrays for High-Performance Flexible Image Sensors with Long-Term Stability, Adv. Mater. 28 (2016) 2201–2208. doi:10.1002/adma.201505126. [20] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A.D. Sheikh, T. Wu, Ambipolar solution-processed hybrid perovskite phototransistors, Nat. Commun. 6 (2015) 1–8. doi:10.1038/ncomms9238. [21] C. Liu, K. Wang, P. Du, E. Wang, X. Gong, A.J. Heeger, Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters, Nanoscale. 7 (2015) 16460–16469. doi:10.1039/c5nr04575d. [22] Y. Wang, D. Yang, X. Zhou, D. Ma, A. Vadim, T. Ahamad, S.M. Alshehri, Perovskite/Polymer Hybrid Thin Films for High External Quantum Efficiency Photodetectors with Wide Spectral Response from Visible to Near- Infrared Wavelengths, Adv. Opt. Mater. 5 (2017) 1–6. doi:10.1002/adom.201700213. [23] Y. Zhao, C. Li, J. Jiang, B. Wang, L. Shen, Sensitive and Stable Tin–Lead Hybrid Perovskite Photodetectors Enabled by Double‐Sided Surface Passivation for Infrared Upconversion Detection, Small. 16 (2020) 2001534. doi:10.1002/smll.202001534. [24] J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3, J. Phys. Chem. Lett. 6 (2015) 3503–3509. doi:10.1021/acs.jpclett.5b01738. [25] T. Nakamura, S. Yakumaru, M.A. Truong, K. Kim, J. Liu, S. Hu, K. Otsuka, R. Hashimoto, R. Murdey, T. Sasamori, H. Do Kim, H. Ohkita, T. Handa, Y. Kanemitsu, A. Wakamiya, Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution, Nat. Commun. 11 (2020) 3008. doi:10.1038/s41467-020-16726-3. [26] B. Zhao, M. Abdi-Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj, W. Nie, A.J. Pearson, Y. Puttisong, K.C. Gödel, H.E. Beere, D.A. Ritchie, A.D. Mohite, S.E. Dutton, R.H. Friend, A. Sadhanala, High Open-Circuit Voltages in Tin-Rich Low-Bandgap Perovskite-Based Planar Heterojunction Photovoltaics, Adv. Mater. 29 (2017) 1604744. doi:10.1002/adma.201604744. [27] Z. Yang, A. Rajagopal, C.C. Chueh, S.B. Jo, B. Liu, T. Zhao, A.K.Y. Jen, Stable Low-Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells, Adv. Mater. 28 (2016) 8990–8997. doi:10.1002/adma.201602696. [28] S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Il Seok, Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex, J. Am. Chem. Soc. 138 (2016) 3974–3977. doi:10.1021/jacs.6b00142. [29] X. Xu, C.C. Chueh, P. Jing, Z. Yang, X. Shi, T. Zhao, L.Y. Lin, A.K.Y. Jen, High-Performance Near-IR Photodetector Using Low-Bandgap MA0.5FA0.5Pb0.5Sn0.5I3 Perovskite, Adv. Funct. Mater. 27 (2017) 1–6. doi:10.1002/adfm.201701053. [30] W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M. Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang, Y. Yan, Highly Sensitive Low‐Bandgap Perovskite Photodetectors with Response from Ultraviolet to the Near‐Infrared Region, Adv. Funct. Mater. 27 (2017) 1703953. doi:10.1002/adfm.201703953. [31] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films. 361 (2000) 527–532. doi:10.1016/S0040-6090(99)00825-1. [32] C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M.M. Junda, C. Wang, C. Jiang, M. Al‐Jassim, R.J. Ellingson, N.J. Podraza, K. Zhu, Y. Yan, Reducing Saturation‐Current Density to Realize High‐Efficiency Low‐ Bandgap Mixed Tin–Lead Halide Perovskite Solar Cells, Adv. Energy Mater. 9 (2019) 1803135. doi:10.1002/aenm.201803135. [33] B. Subedi, C. Li, M.M. Junda, Z. Song, Y. Yan, N.J. Podraza, Effects of intrinsic and atmospherically induced defects in narrow bandgap (FASnI3)x(MAPbI3)1−x perovskite films and solar cells, J. Chem. Phys. 152 (2020) 064705. doi:10.1063/1.5126867. [34] W. Abdelaziz, A. Shaker, M. Abouelatta, A. Zekry, Possible efficiency boosting of non-fullerene acceptor solar cell using device simulation, Opt. Mater. (Amst). 91 (2019) 239–245. doi:10.1016/j.optmat.2019.03.023. [35] G. Xu, P. Bi, S. Wang, R. Xue, J. Zhang, H. Chen, W. Chen, X. Hao, Y. Li, Y. Li, Integrating Ultrathin Bulk-Heterojunction Organic Semiconductor Intermediary for High-Performance Low-Bandgap Perovskite Solar Cells with Low Energy Loss, Adv. Funct. Mater. 28 (2018) 1–8. doi:10.1002/adfm.201804427. [36] G. Kapil, T. Bessho, C.H. Ng, K. Hamada, M. Pandey, M.A. Kamarudin, D. Hirotani, T. Kinoshita, T. Minemoto, Q. Shen, T. Toyoda, T.N. Murakami, H. Segawa, S. Hayase, Strain Relaxation and Light Management in Tin-Lead Perovskite Solar Cells to Achieve High Efficiencies, ACS Energy Lett. 4 (2019) 1991–1998. doi:10.1021/acsenergylett.9b01237. [37] G. Kapil, T.S. Ripolles, K. Hamada, Y. Ogomi, T. Bessho, T. Kinoshita, J. Chantana, K. Yoshino, Q. Shen, T. Toyoda, T. Minemoto, T.N. Murakami, H. Segawa, S. Hayase, Highly Efficient 17.6% Tin-Lead Mixed Perovskite Solar Cells Realized through Spike Structure, Nano Lett. 18 (2018) 3600– 3607. doi:10.1021/acs.nanolett.8b00701. [38] M. Stolterfoht, P. Caprioglio, C.M. Wolff, J.A. Márquez, J. Nordmann, S. Zhang, D. Rothhardt, U. Hörmann, Y. Amir, A. Redinger, L. Kegelmann, F. Zu, S. Albrecht, N. Koch, T. Kirchartz, M. Saliba, T. Unold, D. Neher, The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells, Energy Environ. Sci. 12 (2019) 2778–2788. doi:10.1039/c9ee02020a. [39] Y. Raoui, H. Ez-Zahraouy, S. Kazim, S. Ahmad, Energy level engineering of charge selective contact and halide perovskite by modulating band offset: Mechanistic insights, J. Energy Chem. 54 (2021) 822–829. doi:10.1016/j.jechem.2020.06.030. [40] N. Lakhdar, A. Hima, Electron transport material effect on performance of perovskite solar cells based on CH3NH3GeI3, Opt. Mater. 99 (2020) 109517. doi:10.1016/j.optmat.2019.109517. [41] Z. Ni, C. Bao, Y. Liu, Q. Jiang, W.Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells, Science. 367 (2020) 1352–1358. doi:10.1126/science.aba0893. [42] M.S. Chowdhury, S.A. Shahahmadi, P. Chelvanathan, S.K. Tiong, N. Amin, K. Techato, N. Nuthammachot, T. Chowdhury, M. Suklueng, Effect of deep- level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D, Results Phys. 16 (2020) 102839. doi:10.1016/j.rinp.2019.102839. [43] T. Jiang, Z. Chen, X. Chen, T. Liu, X. Chen, W.E.I. Sha, H. Zhu, Y. (Michael) Yang, Realizing High Efficiency over 20% of Low‐Bandgap Pb– Sn‐Alloyed Perovskite Solar Cells by In Situ Reduction of Sn4+, Sol. RRL. 4 (2020) 1900467. doi:10.1002/solr.201900467. [44] K. Frohna, S.D. Stranks, Hybrid perovskites for device applications, in: Handb. Org. Mater. Electron. Photonic Devices, Elsevier, 2019: pp. 211– 256. doi:10.1016/B978-0-08-102284-9.00007-3. [45] S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science. 342 (2013) 341–344. doi:10.1126/science.1243982. [46] T.S. Ripolles, D. Yamasuso, Y. Zhang, M.A. Kamarudin, C. Ding, D. Hirotani, Q. Shen, S. Hayase, New Tin(II) Fluoride Derivative as a Precursor for Enhancing the Efficiency of Inverted Planar Tin/Lead Perovskite Solar Cells, J. Phys. Chem. C. 122 (2018) 27284–27291. doi:10.1021/acs.jpcc.8b09609. [47] C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen, W. Huang, Highly Sensitive, Fast Response Perovskite Photodetectors Demonstrated in Weak Light Detection Circuit and Visible Light Communication System, Small. 15 (2019) 1903599. doi:10.1002/smll.201903599. | ||
آمار تعداد مشاهده مقاله: 210 تعداد دریافت فایل اصل مقاله: 230 |