تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,403 |
تعداد دریافت فایل اصل مقاله | 5,597,204 |
Electrocatalytic Determination of Captopril on Gold Nanoparticle-Modified Carbon Paste Electrode. | ||
Journal of Optoelectronical Nanostructures | ||
دوره 7، شماره 4 - شماره پیاپی 28، بهمن 2022، صفحه 80-93 اصل مقاله (853.79 K) | ||
نوع مقاله: Articles | ||
شناسه دیجیتال (DOI): 10.30495/jopn.2022.29168.1241 | ||
نویسندگان | ||
Mohamad Ali Zare* 1؛ Omran Moradlou2؛ Behjat Tahmasebi3؛ Maryam Iranpour4؛ Parisa Farashi3 | ||
1Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran | ||
2Department of Chemistry, College of Sciences, Alzahra University, Tehran, Iran | ||
3Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran. | ||
4Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran | ||
تاریخ دریافت: 20 مهر 1400، تاریخ بازنگری: 22 تیر 1401، تاریخ پذیرش: 11 شهریور 1401 | ||
چکیده | ||
The electrochemical behavior of captopril at the surface of a carbon-paste electrode (CPE) modified with gold nanoparticles (GNPs) is described. The prepared electrode shows an excellent electrocatalytic activity toward the oxidation of captopril, which is leading to marked considerable improvement of sensitivity. Whereas at the surface of unmodified electrode an electrochemical activity for captopril cannot be observed, a very sharp anodic wave with an anodic peak potential about 1.0V (versus Ag/AgCl) is obtained using the prepared modified electrode. Captopril oxidation on CPE/GNPs proceeds at pH between 4.0 and 10.0. Under the optimized conditions, the electrocatalytic oxidation peak current of captopril showed two linear dynamic ranges with a detection limit of 8.28×10-2 µM captopril. The linear calibration range was 1.14-16.98 and 21.49-62.1 µM using amperometric. Finally, the sensor was examined as a selective, simple, and precise new electrochemical sensor for the determination of captopril in pharmaceutical samples including tablets and satisfactory results were obtained. | ||
کلیدواژهها | ||
Electrochemical؛ Determination؛ Captopril؛ Gold Nanoparticle | ||
مراجع | ||
[1] M.M. Tuckerman, Analytical profiles of drug substances, Vol. 11. Edited by Klaus Florey, Academic Press, 111 Fifth Avenue, New York, NY 10003. 1982. 665 pp. 15 × 23 cm. Price $39.00, J. Pharm. Sci. 72 (1983) 582. doi:10.1002/jps.2600720535. [2] A.O. Nur, J.S. Zhang, Recent progress in sustained/controlled oral delivery of captopril: an overview, Int. J. Pharm. 194 (2000) 139–146. doi:https://doi.org/10.1016/S0378-5173(99)00362-2. [3] M. Guivernau, F. Armijo, R. Rosas, Role of sulfhydryl groups in the stimulatory effect of captopril on vascular prostacyclin synthesis., Eur. J. Pharmacol. 198 (1991) 1–6. doi:10.1016/0014-2999(91)90554-4. [4] N. Aykin, R. Neal, M. Yusof, N. Ercal, Determination of captopril in biological samples by high-performance liquid chromatography with ThioGloTM3 derivatization, Biomed. Chromatogr. 15 (2001) 427–432. doi:10.1002/bmc.95. [5] A.M. Pimenta, A.N. Araújo, M.C.B.S.M. Montenegro, Sequential injection analysis of captopril based on colorimetric and potentiometric detection, Anal. Chim. Acta. 438 (2001) 31–38. doi:https://doi.org/10.1016/S0003-2670(00)01307-6. [6] T. Mirza, H.S.I. Tan, Determination of captopril in pharmaceutical tablets by anion-exchange HPLC using indirect photometric detection; a study in systematic method development, J. Pharm. Biomed. Anal. 25 (2001) 39– 52. doi:https://doi.org/10.1016/S0731-7085(00)00462-3. [7] A.M. El-Brashy, Titrimetric determination of captopril in dosage forms., Acta Pharm. Hung. 65 (1995) 91–93. https://europepmc.org/article/med/7572189. [8] P. Pourhakkak, M.A. Karimi, H. Tavallali, P. Pourhakkak, M. Mazloum Ardakani, A New Potentiometric Sensor for Rapid Determination of Captopril in Pharmaceutical Formulation and Biological Samples, Iran. J. Anal. Chem. (2022). https://doi.org/10.30473/ijac.2022.63786.1234. [9] P.T. Lee, R.G. Compton, Precursor modified electrodes: electrochemical detection of captopril, Electroanalysis. 27 (2015) 2286–2294. https://doi.org/10.1002/elan.201500093. [10] R.A. Soomro, M.M. Tunesi, S. Karakus, N. Kalwar, Highly sensitive electrochemical determination of captopril using CuO modified ITO electrode: the effect of in situ grown nanostructures over signal sensitivity, RSC Adv. 7 (2017) 19353–19362. DOI: 10.1039/C7RA01538K [11] A. Ghosh, A.B. Pawar, T. Chirmade, S.M. Jathar, R. Bhambure, D. Sengupta, A.P. Giri, M.J. Kulkarni, Investigation of the Captopril–Insulin Interaction by Mass Spectrometry and Computational Approaches Reveals that Captopril Induces Structural Changes in Insulin, ACS Omega. 7 (2022) 23115–23126. https://doi.org/10.1021 /acsomega.2c00660 [12] Z.S. Li, H.N. Qian, T.Y. Fan, Preparation and in vitro evaluation of fused deposition modeling 3D printed compound tablets of captopril and hydrochlorothiazide, Beijing Da Xue Xue Bao. Yi Xue Ban= J. Peking Univ. Heal. Sci. 54 (2022) 572–577. https://doi.org/10.19723/j.issn.1671- 167x.2021.02.020. [13] S.B. Simanjuntak, M.J. Kalalo, T. Hebber, T.E. Tallei, Fatimawali, Angiotensin converting enzyme inhibitors from Abelmoschus manihot (L.) Medik leaves: A molecular docking study, in: AIP Conf. Proc., AIP Publishing LLC, 2022: p. 70002. https://doi.org/10.1063/5.0104277. [14] J.A. Badejo, O.S. Michael, M.O. Adetona, O. Abdulmalik, E. Agbebi, E.O. Iwalewa, O.S. Fagbemi, Mechanisms of anti-hypertensive activity of methanol leaf extract and fractions of Persea americana Mill.(Lauraceae) in rats, Niger. J. Pharm. Res. 18 (2022) 63–74. https://www.ajol.info/index.php/njpr/article/view/228604 [15] I. Giangrieco, M. Tamburrini, L. Tuppo, M.S. Pasquariello, M.A. Ciardiello, Healthy biological activities in legume flours from industrial cooking, Food Biosci. 48 (2022) 101743. https://doi.org/10.1016/j.fbio.2022.101743 [16] L.B. Kuntze, R.C. Antonio, T.C. Izidoro‐Toledo, C.A. Meschiari, J.E. Tanus‐Santos, R.F. Gerlach, Captopril and Lisinopril Only Inhibit Matrix Metalloproteinase‐2 (MMP‐2) Activity at Millimolar Concentrations, Basic Clin. Pharmacol. Toxicol. 114 (2014) 233–239. https://doi.org/ 10.1111/bcpt.12151. [17] A.J. dos Santos, P.L. Cabot, E. Brillas, I. Sirés, A comprehensive study on the electrochemical advanced oxidation of antihypertensive captopril in different cells and aqueous matrices, Appl. Catal. B Environ. 277 (2020) 119240. https://doi.org/10.1016/j.apcatb.2020.119240. [18] M. Skowron, W. Ciesielski, Spectrophotometric determination of methimazole, D-penicillamine, captopril, and disulfiram in pure form and drug formulations, J. Anal. Chem. 66 (2011) 714–719. https://link. springer.com/article/10.1134/S1061934811080132. [19] B. Li, Z. Zhang, M. Wu, Flow-injection chemiluminescence determination of captopril using on-line electrogenerated silver (II) as the oxidant, Microchem. J. 70 (2001) 85–91. https://doi.org/10.1016/S0026- 265X(01)00090-X. [20] M. Ghazi-Khansari, A. Mohammadi-Bardbori, Captopril ameliorates toxicity induced by paraquat in mitochondria isolated from the rat liver, Toxicol. Vitr. 21 (2007) 403–407. https://doi.org/10.1016/j.tiv.2006.10. 001. [21] A.A. Ensafi, H. Karimi-Maleh, M. Ghiaci, M. Arshadi, Characterization of Mn-nanoparticles decorated organo-functionalized SiO2–Al2O3 mixed-oxide as a novel electrochemical sensor: application for the voltammetric determination of captopril, J. Mater. Chem. 21 (2011) 15022–15030. doi:10.1039/C1JM11909E. [22] M. Safaei, H. Beitollahi, M.R. Shishehbore, S. Tajik, R. hosseinzadeh, Electrocatalytic determination of captopril using a carbon paste electrode modified with N-(ferrocenyl-methylidene)fluorene-2-amine and graphene/ZnO nanocomposite, J. Serbian Chem. Soc. Vol 84, No 2 (2019)DO - 10.2298/JSC180414095S . (2019). https://shd-pub.org.rs/ index.php/JSCS/article/view/6772. [23] M.B. Gholivand, M. Khodadadian, Simultaneous Voltammetric Determination of Captopril and Hydrochlorothiazide on a Graphene/Ferrocene Composite Carbon Paste Electrode, Electroanalysis. 25 (2013) 1263–1270. doi:10.1002/elan.201200665. [24] H. Bagheri, H. Karimi-Maleh, F. Karimi, S. Mallakpour, M. Keyvanfard, Square wave voltammetric determination of captopril in liquid phase using N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified ZnO/CNT carbon paste electrode as a novel electrochemical sensor, J. Mol. Liq. 198 (2014) 193–199. doi:https://doi.org/10.1016/j.molliq.2014.06.027. [25] W. Zheng, Y.F. Zheng, K.W. Jin, N. Wang, Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films, Talanta. 74 (2008) 1414–1419. doi:https://doi.org/10.1016/j.talanta.2007 .09.017. [26] H. Beitollahi, S. Ghofrani Ivari, R. Alizadeh, R. Hosseinzadeh, Preparation, Characterization and Electrochemical Application of ZnO- CuO Nanoplates for Voltammetric Determination of Captopril and Tryptophan Using Modified Carbon Paste Electrode, Electroanalysis. 27 (2015) 1742–1749. doi:10.1002/elan.201500016. [27] H. Beitollahi, M.A. Taher, M. Ahmadipour, R. Hosseinzadeh, Electrocatalytic determination of captopril using a modified carbon nanotube paste electrode: Application to determination of captopril in pharmaceutical and biological samples, Measurement. 47 (2014) 770– 776. doi:https://doi.org/10.1016/j.measurement.2013.10.001. [28] B. Rezaei, S. Damiri, Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate (II) electrocatalyst system as a sensor for determination of captopril, Sensors Actuators B Chem. 134 (2008) 324–331. https://doi.org/10.1016/j.snb.2008.05.004. [29] A.A. Ensafi, M. Monsef, B. Rezaei, H. Karimi-Maleh, Electrocatalytic oxidation of captopril on a vinylferrocene modified carbon nanotubes paste electrode, Anal. Methods. 4 (2012) 1332–1338. https://pubs.rsc.org /en/content/articlelanding/2012/ay/c2ay05815d/unauth. [30] H. Bahramipur, F. Jalali, Voltammetric determination of captopril using chlorpromazine as a homogeneous mediator, Int. J. Electrochem. 2011 (2011). https://doi.org/10.4061/2011/864358. [31] H. Karimi-Maleh, A.A. Ensafi, A.R. Allafchian, Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode, J. Solid State Electrochem. 14 (2010) 9. https://link.springer.com/article/10.1007/ s10008-008-0781-2. [32] H. Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples, Anal. Methods. 8 (2016) 1780–1788. https:// doi.org/10.1039/C5AY03284A. [33] R.-I. Stefan, J.K.F. van Staden, H.Y. Aboul-Enein, Amperometric biosensors/sequential injection analysis system for simultaneous determination of S-and R-captopril, Biosens. Bioelectron. 15 (2000) 1–5. https://doi.org/10.1016/S0956-5663(99)00075-5. | ||
آمار تعداد مشاهده مقاله: 106 تعداد دریافت فایل اصل مقاله: 152 |