References
- Liu, S.Zhengyong. Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon. 174 (2021) ,617-624. Available: https://sciencedirect.com/science/article/pii/S000862232031174X
- Servatkhah, and H. Alaei. The Effect of Antenna Movement and
Material Properties on Electromagnetically Induced Transparency in a TwoDimensional Metamaterials. Journal of Optoelectronical Nanostructures 1.2 (2016):31-38. Available: http://jopn.miau.ac.ir/article_2046.html
- B. Pendry, D.R. Smith, Reversing light with negative refraction, Contemp. Phys. 45, (2004)191202. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d032ffe1727a8e0949c3917869fd98d3b0189cc5
- Y. Xiao, D.J. Liu, X.L. Ma, Z.H. Wang, Multi-band transmissions of chiral metamaterial based on FabryPerot like resonators. Opt. Express 23, (2015)70537061. Available: https://opg.optica.org/abstract.cfm?uri=oe-23-6-7053
- Y. Tang, Z.Y. Xiao, K.K. Xu, Z.H. Wang, Cross polarization conversion based on a new chiral spiral slot structure in THz region. Opt. Quantum Electron.48, (2016)111. Available: https://link.springer.com/article/10.1007/s11082-016-0407-3
- L.Markovich, A. Andrei, Z. Maksim, M. Radu, V. L. Andrei . Metamaterial polarization converter analysis: limits of performance. Applied Physics B 112, (2013)143-152. Available: https://link.springer.com/article/10.1007/s00340-013-5383-8
- Rosenblatt, O. Meir. Power drainage and energy dissipation in lossy but perfect lenses. Physical Review A 95, (2017) 053857. Available: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.053857
- Chen, N. Hai, T. Chaojun, C. Yinhang, Y. Bo, Z. Zhiyuan, K. Yurong, X. Zhijun, C.Pinggen . Highly sensitive refractive-index sensor based on strong magnetic resonance in metamaterials. Applied Physics Express 12, (2019)052015. Available: https://iopscience.iop.org/article/10.7567/1882-0786/ab14fa/meta
- Li, J. Chuansheng, R. Yongze, H. Jigang, Q. Meng, W. Lingling. Investigation of multiband plasmonic metamaterial perfect absorbers based on graphene ribbons by the phase-coupled method. Carbon 141, (2019) 481-487.Available: https://sciencedirect.com/science/article/pii/S0008622318309138
- Cubukcu, S. Zhang, Y.S. Park, G. Bartal, X. Zhang, Split ring resonator sensors for infrared detection of single molecular monolayers, Appl. Phys.Lett. 95, (2009) 043113. Available: https://aip.scitation.org/doi/abs/10.1063/1.3194154
- Ouchi, K. Kajiki, K. Takayuki, I. Takeaki, K. Yasushi, S. Ryota, K. Oichi , K. Kodo, Terahertz imaging system for medical applications and related high efficiency terahertz devices. devices, J. Infrared, Millim. Terahertz 35, (2014) 118-130. Available: https://link.springer.com/article/10.1007/s10762-013-0004-5
- Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D. R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, (2006) 977980. Available: https://science.org/doi/abs/10.1126/science.1133628
- Grigorenko, M. Polini, K. Novoselov, Graphene plasmonics. Nat. Photonics 6, (2012) 749758. Available: https://nature.com/articles/nphoton.2012.262.
- Wright, C. Zhang, Dynamic conductivity of graphene with electron-phonon interaction. Phys. Rev. B 81, (2010) 165413. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.165413
- Xiao, R. Sun, J. He, K. Qin, S. Kong, J. Chen, W. Xiumin, A terahertz modulator based on graphene plasmonic waveguide. IEEE Photon. Technol. Lett. 27, (2015) 21902192. Available: https://ieeexplore.ieee.org/abstract/document/7153552/
- Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator. Nano Lett. 15, (2015) 4393-4400. Available: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b00630
- Faezinia, Quantum modeling of light absorption in graphene based phototransistors. Journal of Optoelectronical Nanostructures 2.1 (2017): 9-20. Available:http://jopn.miau.ac.ir/article_2196.html
- Moftakharzadeh, B. Afkhami Aghda, and M. Hosseini. Noise
Equivalent Power Optimization of Graphene-Superconductor Optical Sensors inthe Current Bias Mode. Journal of Optoelectronical Nanostructures 3.3 (2018): 1-12. Available: http://jopn.miau.ac.ir/article_3040.html
- Zhao, J. M. Zhao, Z. M. Zhang. Enhancement of near-infrared absorption in graphene with metal gratings. Applied Physics Letters 105, (2014) 031905. Available: https://aip.scitation.org/doi/abs/10.1063/1.4890624
- Narita, A. V. Ivan, F. Wout, S. M. Kunal, A. J. Soeren, R. H. Michael, B. Mischa, et al. Bottom-up synthesis of liquid-phase-processable graphene nanoribbons with near-infrared absorption. Acs Nano 8, (2014) 11622-11630. Available: https://pubs.acs.org/doi/abs/10.1021/nn5049014
- Chen, C.Siyu, G. Ping, Y. Zhendong, T. Chaojun, X. Zhijun, L. Bo, L. Zhengqi. Electrically modulating and switching infrared absorption of monolayer graphene in metamaterials. Carbon 162, (2020) 187-194. Available: https://sciencedirect.com/science/article/pii/S0008622320301780
- S. Fan, C. C. Guo, Z. H. Zhu, W. Xu, F. Wu, X. D. Yuan, S. Q. Qin. Monolayer-graphene-based perfect absorption structures in the near infrared. Optics express 25, (2017) 13079-13086. Available: https://opg.optica.org/abstract.cfm?uri=oe-25-12-13079
- Liu, C.Arvinder, Z. Deyin, R. P. Jessica, J. Yichen, S. Yichen, M.Laxmy, et al. Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Applied Physics Letters 105, (2014) 181105. Available: https://aip.scitation.org/doi/abs/10.1063/1.4901181
- Hasani, R. Chegell, Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field. Journal of Optoelectronical Nanostructures, (2020), 5(2): 49-64. Available:https://jopn.marvdasht.iau.ir/article_4218_d5c26c00df89ef4ffd208100103b6d30.pdf
- Rahimi, Absorption spectra of a graphene embedded one dimensional Fibonacci a periodic structure. Journal of Optoelectronical Nanostructures, (2018), 3(4): 45-58. Available:https://jopn.marvdasht.iau.ir/article_3259_fd0b0ef6f20c392b449ca69ad1d2f918.pdf
- R. Zhan, F.Y. Zhao, X.H. Hu, X.H. Liu, J. Zi, Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies. Phys. Rev. B 86, (2012) 165416. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.165416
- Matthaiakakis, X.Z. Yan, H. Mizuta, M.D.B. Charlton, Tuneable strong optical absorption in a graphene-insulator-metal hybrid plasmonic device. Sci. Rep. 7, (2017) 7303. Available: https://nature.com/articles/s41598-017-07254-0
- Safaei, S. Chandra, M.N. Leuenberger, D. Chanda, Wide angle dynamically tunable enhanced infrared absorption on large-area nanopatterned graphene. ACS Nano 13, (2019) 421-428. Available: https://pubs.acs.org/doi/abs/10.1021/acsnano.8b06601
- D. Goldflam, Z. Fei, I. Ruiz, S.W. Howell, P.S. Davids, D.W. Peters, T.E. Beechem, Designing graphene absorption in a multispectral plasmonenhanced infrared detector. Optic Express. 25, (2017) 12400-12408. Available: https://opg.optica.org/abstract.cfm?uri=oe-25-11-12400
- Zhihong, G. Chucai, Z. Jianfa, L. Ken, Y. Xiaodong, Q. Shiqiao, Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width. Applied Physics Express. 8, (2014) 015102. Available: https://iopscience.iop.org/article/10.7567/APEX.8.015102/meta
- Biabanifard, M. S. Abrishamian. Circuit modeling of tunable terahertz graphene absorber. Optik. 158, (2018) 842-849. Available: https://sciencedirect.com/science/article/pii/S0030402617317461
- Ye, Z. Fang, Z. Yong, H. L. Qing. Composite graphene-metal microstructures for enhanced multiband absorption covering the entire terahertz range. Carbon. 148, (2019) 317-325. Available: https://sciencedirect.com/science/article/pii/S0008622319303100
- Biabanifard, S. Asgari, S. Biabanifard, M. S. Abrishamian. Analytical design of tunable multi-band terahertz absorber composed of graphene disks. Optik. 182, (2019) 433-442. Available: https://sciencedirect.com/science/article/pii/S0030402619300683
- Qi, L. Chang, S. M. A. Shah. A broad dual-band switchable graphene based terahertz metamaterial absorber. Carbon. 153, (2019) 179-188. Available: https://sciencedirect.com/science/article/pii/S0008622319306980
- Biabanifard. Ultra-broadband terahertz absorber based on graphene ribbons. Optik. 172, (2018) 1026-1033. Available: https://sciencedirect.com/science/article/pii/S0030402618311094
- Cen, C. Jiajia, L. Cuiping, H. Jing, C. Xifang, C. Yongjian, Y. Zao, X. Xibin, Y. Yougen, X. Shuyuan. Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays. Physica E: Lowdimensional Systems and Nanostructures. 103, (2018) 93-98. Available: https://sciencedirect.com/science/article/pii/S1386947718303783
- He, Y. Yuan, Z. Zhihan, C. Minghua, Z. Lei, Y. Wenlong, Y. Yuqiang, W. Fengmin, J. Jiuxing. Active graphene metamaterial absorber for terahertz absorption bandwidth, intensity and frequency control. Optical Materials Express. 8, (2018) 1031-1042. Available: https://opg.optica.org/abstract.cfm?uri=ome-8-4-1031
- Vahed, and S. S. Ahmadi. Graphene-based plasmonic electrooptic modulator with sub-wavelength thickness and improved modulation depth. Applied Physics B. 123, (2017) 1-6. Available: https://link.springer.com/article/10.1007/s00340-017-6845-1
- Tabatabaei, M. Biabanifard, M. S. Abrishamian. Terahertz polarization-insensitive and all-optical tunable filter using Kerr effect in graphene disks arrays. Optik. 180, (2019) 526-535. Available: https://sciencedirect.com/science/article/pii/S003040261831859X
- Su, Y. Wang, X. Luo, H. Luo, C. Zhang, M. Li, T. Sang, G. Yang. A tunable THz absorber consisting of an elliptical graphene disk array. Physical Chemistry Chemical Physics. 20, (2018) 14357-14361. Available: https://pubs.rsc.org/en/content/articlehtml/2018/cp/c8cp01649f
- Xiao, M. Gu, S. Xiao, Broadband wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays. Applied optics. 56, (2017) 5458-5462. Available: https://opg.optica.org/abstract.cfm?uri=ao-56-19-5458
- S. R Kaipa, A.B. Yakovlev, G.W. Hanson, Y.R. Padooru, F. Medina, F. Mesa, Enhanced transmission with a graphene-dielectric microstructure at low terahertz frequencies. Phys. Rev. B 85, (2012) 245407. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.85.245407
- Xu, Y. Jin, L. Yang, J. Yang, X. Jian, Characteristics of electro refractive modulating based on Graphene-Oxide-Silicon waveguide. Optic Express. 20, (2012) 22398-22405. Available: https://opg.optica.org/abstract.cfm?uri=oe-20-20-22398
- ZW, C. LH. Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix. Appl. Surf. Sc.i, 445, (2018) 6570. Available: https://www.sciencedirect.com/science/article/pii/S016943321830864X
- Wang, F., Huang, S., Li, L., Chen, W. and Xie, Z., Dual-band tunable perfect metamaterial absorber based on graphene. Appl. Opt., 57, (2018) 6916-6922. https://opg.optica.org/abstract.cfm?uri=ao-57-24-6916.
Di, L.; Yang, H.; Xian, T.; Chen, X.J. Facile synthesis and enhanced visible light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation. Nanoscale Res. Lett. 13, (2018) 257. Available: https://link.springer.com/article/10.1186/s11671-018-2671-6
|