تعداد نشریات | 12 |
تعداد شمارهها | 567 |
تعداد مقالات | 5,878 |
تعداد مشاهده مقاله | 8,659,441 |
تعداد دریافت فایل اصل مقاله | 5,597,218 |
Electronic Conductance Modulation of Armchair Graphyne Nanoribbon by Twisting Deformation | ||
Journal of Optoelectronical Nanostructures | ||
مقاله 2، دوره 8، شماره 2 - شماره پیاپی 30، مرداد 2023، صفحه 15-31 اصل مقاله (1.24 M) | ||
نوع مقاله: Articles | ||
شناسه دیجیتال (DOI): 10.30495/jopn.2023.31553.1281 | ||
نویسندگان | ||
Somayeh Fotoohi* 1؛ Mansoureh Pashangpour2؛ Saeed Haji-Nasiri3 | ||
1Department of Electrical Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran | ||
2Department of Physics, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran. | ||
3Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran. | ||
تاریخ دریافت: 19 بهمن 1401، تاریخ بازنگری: 04 خرداد 1402، تاریخ پذیرش: 15 خرداد 1402 | ||
چکیده | ||
Abstract The electronic and transport properties of armchair α- graphyne nanoribbons (α-AGyNRs) are studied using density functional theory with non-equilibrium Green function formalism. The α-AGyNRs are considered with widths N = 6, 7 and 8 to represent three distinct families behavior in presence of twisting. The band structure, current-voltage characteristic, transmission spectra, molecular energy spectrum, molecular projected self- consistent Hamiltonian (MPSH), and transmission pathways are studied for α-AGyNRs with θ= 0º, 30º, 60º and 90º. The results indicate that 6 and 7 α-AGyNRs devices are semiconductor, while 8 α-AGyNR device has metallic character. Moreover, these behaviors are preserved by applying the twist. Our theoretical study shows that the electronic conduction of α-AGyNRs can be tuned by twisted deformation. The maximum modulation of conductance at 1.2 V is obtained 69.94% for 7 α-AGyNR device from θ=0º to θ=90º. The investigation of MPSH demonstrates that distribution of charge density get localized on twisting sites which impact on the electron tunneling across the scattering region. | ||
کلیدواژهها | ||
α-Graphyne Nanoribbon؛ Twisting Deformation؛ Transmission؛ Molecular Energy Spectrum؛ Transmission Pathways | ||
مراجع | ||
[1] S. Yu, T. Teng, C. Huang, H. Hsieh and Y. Wei, Performance Evaluation of Carbon-Based Nanofluids for Direct Absorption Solar Collector, Energies, 16 (2023, Jan.) 1-17. Available: https://doi.org/10.3390/en16031157 [2] X. Shi, H. Liu, Z. Hu, J. Zhao, J. Gao, Porous carbon-based metal-free monolayers towards to high stable and flexible wearable thermoelectric and microelectronics, Nanoscale, 15 (2023, Dec.) 1522-1528. Available: https://doi.org/10.1039/D2NR05443D [3] L.Yi, K. Noguchi, L.iu, A. Otsu,T. Onda, Z. Chen, Deformation behavior of graphite and its effect on microstructure and thermal properties of aluminum/graphite composites, Journal of Alloys and Compounds, 933 (2023, Feb.) 167752. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925838822041433 [4] S. Zhao, X. Zhang, Y. Ni , Q. Peng , Y. Wei , Anisotropic mechanical response of a 2D covalently bound fullerene lattice, Carbon, 202 (2023, Jan.) 118-124. [5] S. N. Jafari, A. Ghadimi, S. Rouhi, Strained Carbon Nanotube (SCNT) Thin Layer Effect on GaAs Solar Cells Efficiency , Journal of Optoelectronical Nanostructures , 4 (2020, Autumn) 87-110. https://jopn.marvdasht.iau.ir/article_4505.html [6] H. H. Madani, M. R. Shayesteh, M. R. Moslemi, A Carbon Nanotube (CNT)-based SiGe Thin Film Solar Cell Structure, Journal of Optoelectronical Nanostructures, 6 (2021,Winter) 71-86. Available: https://jopn.marvdasht.iau.ir/article_4541.html [7] A. K. Geim ,K. S. Novoselov, The rise of graphene, Nature Materials , 6 (March 2007) 183–191. Available: https://www.nature.com/articles/nmat1849 [8] K.S. Novoselov , A.K. Geim , S.V. Morozov2 , D. Jiang , Y. Zhang , S.V. Dubonos , I.V.Grigorieva , A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films , science, 306 (2004, Oct.) 666-669. Available: https://www.science.org/doi/abs/10.1126/science.1102896 [9] M.F.Craciun, S.Russo, M.Yamamoto, S.Taruchac, Tuneable electronic properties in graphene, Nanotoday, 6 (2011, Feb.) 42-60. Available: https://doi.org/10.1016/j.nantod.2010.12.001 [10] J. Wang, F. Ma, W. Liang, M. Sun, Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures, Materials Today Physics, 2 (2017, Sep.) 6-34. Available: https://doi.org/10.1016/j.mtphys.2017.07.001 [11] M Pashangpour, V Ghaffari, Investigation of structural and electronic transport properties of graphene and graphane using maximally localized Wannier functions, Journal of Theoretical and Applied Physics , 7 (2013, Dec.), 1-8. Available: https://jtap.srbiau.ac.ir/article_18825.html [12] Somayeh Fotoohi , Mohammad Kazem Moravvej-Farshi , Rahim Faez, Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers, Appl. Phys. A, 116 (2014, Apr.) 2057–2063. Available: https://link.springer.com/article/10.1007/s00339-014-8400-9 . [13] F.V. Alamdarlo, G. Solookinejad, F. Zahakifar, M. R. Jalal, M. Jabbari, Synthesis of Graphene Oxide Functionalized with Amio Methyl Phosphonic Acid (AMPA) and its Structural Characterization, Journal of Optoelectronical Nanostructures, 6 (2021, Spring) 91-106. Available: https://jopn.marvdasht.iau.ir/article_4770.html [14] M. Jabbari, M. Dehghan, M. k. moravvej farshi,G. Darvish, M. Ghaffari- miab, Ultra-Compact Bidirectional Terahertz Switch Based on Resonance in Graphene Ring and Plate, Journal of Optoelectronical Nanostructures, 4 (Autumn, 2019) 99-112. Available: https://jopn.marvdasht.iau.ir/article_3761.html [15] h. Rahimi, Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure, Journal of Optoelectronical Nanostructures , 3 (Autumn, 2018) 45-58. Available: https://jopn.marvdasht.iau.ir/article_3259.html [16] R. H. Baughman, H. Eckhardt, and M. Kertesz , Structure property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms, J. Chem. Phys., 87 (Dec. 1987) 6687-6699. Available: https://aip.scitation.org/doi/10.1063/1.453405 [17] W. Wu, W. Guo and , X. C. Zeng, Intrinsic electronic and transport properties of graphyne sheets and nanoribbons, Nanoscale, 5 (2013, Jul.) 9264-9276. Available: https://doi.org/10.1039/C3NR03167E [18] S. Lakshmy, A. Kundu, N. Kalarikkal, B. Chakraborty, Pristine and Transition Metal Decorated Holey Graphyne Monolayer as an Ammonia sensor: Insights from DFT Simulations, J. Phys. D: Appl. Phys., 56 ( 2023, Jan.) 055402. Available: https://iopscience.iop.org/article/10.1088/1361-6463/acae2e [19] K. Srinivasu and Swapan K. Ghosh,Graphyne and Graphdiyne: Promising Materials for Nanoelectronics and Energy Storage Applications, J. Phys. Chem. C, 116 (2012, Jan.), 5951–5956. Available: https://doi.org/10.1021/jp212181h . [20] X. Liu, S. M. Cho, S. Lin, Z. Chen, W. Choi, Y. Kim, E.Yun, E. H. Baek, D. H. Ryu, H. Lee, Constructing two-dimensional holey graphyne with unusual annulative π-extension, Matter , 5 (2022, Jul.), 2306-2318. Available: https://doi.org/10.1016/j.matt.2022.04.033 [21] M Golzani, M Poliki, S Haji-Nasiri, γ-Graphyne rectifier and NDR tunable by doping, line edge roughness and twist, Computational Materials Science, 190 (2021, Apr.)110303. Available:https://www.sciencedirect.com/science/article/abs/pii/S09270256 21000288 [22] J. Ren,N. Zhang,P. Liu, Li adsorption on nitrogen-substituted graphyne for hydrogen storage, Fullerenes, Nanotubes and Carbon Nanostructures , 29 (2021, Oct.) 212-217. Available: https://doi.org/10.1080/1536383X.2020.1830066 [23] D. C. M. Rodrigues, L. L. Lage, P. Venezuela, A. Latge, Exploring the enhancement of the thermoelectric properties of bilayer graphyne nanoribbons , Phys. Chem. Chem. Phys., 24 (2022, Apr.), 9324–9332. Available:https://pubs.rsc.org/en/content/articlelanding/2022/cp/d1cp05491 k [24] Y. Ni,X. Wang, W. Tao,S. . Zhu , K.Yao, The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design, Scientific Reports, 6, (2016, May. ) 25914. Available: https://www.nature.com/articles/srep25914 [25] P. Nayebi, M. Shamshirsaz, Effect of vacancy defects on transport properties of α-armchair graphyne nanoribbons, The European Physical Journal B , 93 (2020, Sep.) 170. Available:https://link.springer.com/article/10.1140/epjb/e2020-10183-5 [26] J. A. Tallaa, E. A. Almahmoudb , K. Al-Khaza’leha, and H. Abu-Farsakhc, Structural and Electronic Properties of Rippled Graphene with Different Orientations of Stone-Wales Defects: First-Principles Study , Semiconductors , 55 (2022, Feb.) 643–653. Available: https://link.springer.com/article/10.1134/S1063782621070198 [27] A. Fasolino, J. H. Los, M. I. Katsnelson, Intrinsic ripples in graphene, Nature Materials, 6 (2007, Sep.) 858–861. Available: https://www.nature.com/articles/nmat2011 . [28] Y. Huang, L. Zhang, H. Lu, F. Lai, Y.Miao and T. Liu, A highly flexible and conductive graphene-wrapped carbon nanofiber membrane for high-performance electrocatalytic applications, Inorg. Chem. Front., 3 (2016, May.) 969-976. Available: https://pubs.rsc.org/en/content/articlelanding/2016/qi/c6qi00101g [29] C. Lenear, M. Becton, X. Wang, Computational analysis of hydrogenated graphyne folding, Chemical Physics Letters, 646 (2016, Feb.) 110-118. Available: https://www.sciencedirect.com/science/article/abs/pii/S0009261416000385 [30] M.Saiz-Bretín, F.Domínguez-Adame, A.V.Malyshev, Twisted graphene nanoribbons as nonlinear nanoelectronic devices, Carbon, 149 (2019, Aug.) 587-593. Available:https://www.sciencedirect.com/science/article/abs/pii/S00086223 19304038 [31] S. Yue, Q. Yan, Z. Zhu, H. Cui, Q. Zheng, G. Su, First-principles study on electronic and magnetic properties of twisted graphene nanoribbon and Möbius strips, Carbon, 71 (2014, May.) 150-158. Available: https://doi.org/10.1016/j.carbon.2014.01.023 [32] G. P. Tang, J. C. Zhou, Z. H. Zhang, X. Q. Deng, and Z. Q. Fan, Altering regularities of electronic transport properties in twisted graphene Nanoribbons, Appl. Phys. Lett., 101, (2012, Jul.) 023104. https://aip.scitation.org/doi/10.1063/1.4733618 [33] Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young, Decoupling superconductivity and correlated insulators in twisted bilayer graphene, Nature Physics , 16 (2020) 926-930. Available: https://doi.org/10.48550/arXiv.1911.13302 [34] A. Nimbalkar, H. Kim, Opportunities and Challenges in Twisted Bilayer Graphene: A Review, Nano-Micro Letters, 12 (2020, Jun.) 126. Available: https://link.springer.com/article/10.1007/s40820-020-00464-8 [35] X. Wei, G. Guo, T. Ouyang, and H. Xiao, Tuning thermal conductance in the twisted graphene and gamma graphyne nanoribbons, Journal of Applied Physics 115, (2014, Apr.) 154313. Available: https://aip.scitation.org/doi/10.1063/1.4872136 [36]V. Do, Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices, Adv. Nat. Sci: Nanosci. Nanotechnol., 5 (2014, Jun.) 033001. Available: https://iopscience.iop.org/article/10.1088/2043-6262/5/3/033001 [37] R. M. Dreizler and E. K. U. Gross. Density Functional Theory (1990, Springer,). Available: https://link.springer.com/book/10.1007/978-3-642-86105-5 [38] R. G. Parr, Y. Weitao. Density-functional Theory of Atoms and Molecules Oxford University Press, (1994, Jan.). Available: https://academic.oup.com/book/41995 [39] M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory, Computer Physics Communications, 119 (1999, Jun.) 67-98. Available: https://www.sciencedirect.com/science/article/abs/pii/S001046559800201X [40] W. Kohn, L.J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140 (1965) A1133. Available: http://dx.doi.org/10.1103/PhysRev.140.A1133 [41] G. C. Solomon, C. Herrmann, T. Hansen, V. Mujica , M. A. Ratner, Exploring local currents in molecular junctions, Nat. Chem., 2 (2010, Mar.) 223-228. Available: https://www.nature.com/articles/nchem.546 [42] Y. Tsuji, R. Movassagh, S. Datta and R. Hoffmann, Exponential Attenuation of Through-Bond Transmission in a Polyene: Theory and Potential Realizations, ACS Nano, 9 (2015, Sep.) 11109-11120. Available: https://pubs.acs.org/doi/10.1021/acsnano.5b04615 . | ||
آمار تعداد مشاهده مقاله: 83 تعداد دریافت فایل اصل مقاله: 171 |