- Jin, Xiaofeng, et al. "Artificial intelligence biosensors: Challenges and prospects." Biosensors and Bioelectronics 165 (2020): 112412. https://www.sciencedirect.com/science/article/abs/pii/S0956566320304061
- Suni, Ian Ivar. "Substrate materials for biomolecular immobilization within electrochemical biosensors." Biosensors 11.7 (2021): 239. https://pubmed.ncbi.nlm.nih.gov/34356710/
- Svigelj, Rossella, et al. "Deep eutectic solvents (DESs) and their application in biosensor development." Sensors 21.13 (2021): 4263. https://www.mdpi.com/1424-8220/21/13/4263
- Bhalla N, Jolly P, Formisano N, Estrela P. Introduction to biosensors. Essays Biochem. 2016 Jun 30;60(1):1-8. https://pubmed.ncbi.nlm.nih.gov/27365030/
- Su, Xiaodi, Laura Sutarlie, and Xian Jun Loh. "Sensors, biosensors, and analytical technologies for aquaculture water quality." Research 2020 (2020). https://spj.science.org/doi/10.34133/2020/8272705
- Khater, Mohga, Alfredo De La Escosura-Muñiz, and Arben Merkoçi. "Biosensors for plant pathogen detection." Biosensors and Bioelectronics 93 (2017): 72-86. https://www.sciencedirect.com/science/article/abs/pii/S0956566316309782
- Zhang, Liyuan, Wei Guo, and Yuan Lu. "Advances in cell‐free biosensors: principle, mechanism, and applications." Biotechnology Journal 15.9 (2020): 2000187. https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.202000187
- Bhattarai, Pravin, and Sadaf Hameed. "Basics of biosensors and nanobiosensors." Nanobiosensors: From Design to Applications (2020): 1-22. https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527345137.ch1
- He, Ziyu, et al. "A review on methods for diagnosis of breast cancer cells and tissues." Cell proliferation 53.7 (2020): e12822. https://pubmed.ncbi.nlm.nih.gov/32530560/
- Benny, Ria, Thathamkulam A. Anjit, and Palayyan Mythili. "An overview of microwave imaging for breast tumor detection." Progress In Electromagnetics Research B 87 (2020): 61-91. https://pubmed.ncbi.nlm.nih.gov/32530560/
- Aldhaeebi, Maged A., et al. "Review of microwaves techniques for breast cancer detection." Sensors 20.8 (2020): 2390. https://pubmed.ncbi.nlm.nih.gov/32331443/
- Gupta, Narbada Prasad, Praveen Kumar Malik, and Bhagwan Shree Ram. "A review on methods and systems for early breast cancer detection." 2020 International conference on computation, automation and knowledge management (ICCAKM). IEEE, 2020. https://ieeexplore.ieee.org/document/9051554/
- Zhang, Zhenhua, et al. "Application of electrochemical biosensors in tumor cell detection." Thoracic cancer 11.4 (2020): 840-850. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7113062/#:~:text=Electrochemical%20biosensors%20provide%20powerful%20tools,cell%20detection%20in%20recent%20years.
- Yılmaz, Merve, et al. "Quartz crystal microbalance (QCM) based biosensor functionalized by HER2/Neu antibody for breast cancer cell detection." Chemosensors 9.4 (2021): 80. https://www.mdpi.com/2227-9040/9/4/80
- Gudagunti, Fleming Dackson, et al. "Early stage detection of breast cancer using hybrid photonic crystal ring resonator." 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies. IEEE, 2014. https://ieeexplore.ieee.org/document/7019364
- Ali, Liaquat, et al. "High quality silicon photonics optical ring resonator biosensor design." 2018 IEEE Nanotechnology Symposium (ANTS). IEEE, 2018. https://ieeexplore.ieee.org/document/8653557
- Ali, Liaquat, et al. "High-quality optical ring resonator-based biosensor for cancer detection." IEEE Sensors Journal 20.4 (2019): 1867-1875. https://ieeexplore.ieee.org/document/8889377
- Malmir, Kiana, Hamidreza Habibiyan, and Hassan Ghafoorifard. "Ultrasensitive optical biosensors based on microresonators with bent waveguides." Optik 216 (2020): 164906. https://www.sciencedirect.com/science/article/abs/pii/S0030402620307427
- Robinson, Savarimuthu, and Nagaraj Dhanlaksmi. "Photonic crystal based biosensor for the detection of glucose concentration in urine." Photonic Sensors 7 (2017): 11-19. https://link.springer.com/article/10.1007/s13320-016-0347-3
- Wang, Yifei, et al. "An optofluidic metasurface for lateral flow-through detection of breast cancer biomarker." Biosensors and Bioelectronics 107 (2018): 224-229. https://www.sciencedirect.com/science/article/abs/pii/S0956566318301325
- Firdous, S., S. Anwar, and R. Rafya. "Development of surface plasmon resonance (SPR) biosensors for use in the diagnostics of malignant and infectious diseases." Laser Physics Letters 15.6 (2018): 065602. https://iopscience.iop.org/article/10.1088/1612-202X/aab43f#:~:text=This%20light%2Dbased%20SPR%20biosensor,monitoring%2C%20and%20environmental%20pollution%20control.
- Chen, Shenna, et al. "Combined detection of breast cancer biomarkers based on plasmonic sensor of gold nanorods." Sensors and Actuators B: Chemical 221 (2015): 1391-1397. https://www.sciencedirect.com/science/article/abs/pii/S092540051530201X
- Fan, Zhiyuan, et al. "Smartphone biosensor system with multi-testing unit based on localized surface plasmon resonance integrated with microfluidics chip." Sensors 20.2 (2020): 446. https://www.mdpi.com/1424-8220/20/2/446
- Kazemzadeh, Mohammadrahim, et al. "Space curvature-inspired nanoplasmonic sensor for breast cancer extracellular vesicle fingerprinting and machine learning classification." Biomedical Optics Express 12.7 (2021): 3965-3981. https://opg.optica.org/boe/fulltext.cfm?uri=boe-12-7-3965&id=451756
- Monteiro, Johny Paulo, et al. "Microfluidic plasmonic biosensor for breast cancer antigen detection." Plasmonics 11 (2016): 45-51. https://link.springer.com/article/10.1007/s11468-015-0016-1
- Sun, Dandan, Yang Ran, and Guanjun Wang. "Label-free detection of cancer biomarkers using an in-line taper fiber-optic interferometer and a fiber Bragg grating." Sensors 17.11 (2017): 2559. https://pubmed.ncbi.nlm.nih.gov/29113127/
- Loyez, Médéric, et al. "Rapid detection of circulating breast cancer cells using a multiresonant optical fiber aptasensor with plasmonic amplification." ACS sensors 5.2 (2020): 454-463. https://pubs.acs.org/doi/abs/10.1021/acssensors.9b02155
- Hossain, Md Biplob, et al. "Numerical modeling of graphene-coated fiber optic surface plasmon resonance biosensor for BRCA1 and BRCA2 genetic breast cancer detection." Optical Engineering 58.3 (2019): 037104-037104. https://www.spiedigitallibrary.org/journals/optical-engineering/volume-58/issue-03/037104/Numerical-modeling-of-graphene-coated-fiber-optic-surface-plasmon-resonance/10.1117/1.OE.58.3.037104.full#_=_
- Sun, Dandan, Yongming Fu, and Yukun Yang. "Label-free detection of breast cancer biomarker using silica microfiber interferometry." Optics Communications 463 (2020): 125375. https://www.sciencedirect.com/science/article/abs/pii/S0030401820300730
- Loyez, Médéric, et al. "HER2 breast cancer biomarker detection using a sandwich optical fiber assay." Talanta 221 (2021): 121452. https://www.sciencedirect.com/science/article/abs/pii/S0039914020307438
- Filippidou, M. K., et al. "Detection of BRCA1 gene on partially reduced graphene oxide biosensors." Microelectronic Engineering 216 (2019): 111093. https://www.sciencedirect.com/science/article/abs/pii/S0167931719302497
- Rezazadeh, Afrooz, and Mohammad Reza Soheilifar. "THz absorber for breast cancer early detection based on graphene as multi-layer structure." Optical and Quantum Electronics 53.10 (2021): 555. https://link.springer.com/article/10.1007/s11082-021-03198-y
- Rahimzadeh, Zahra, et al. "A rapid nanobiosensing platform based on herceptin-conjugated graphene for ultrasensitive detection of circulating tumor cells in early breast cancer." Nanotechnology Reviews 10.1 (2021): 744-753. https://www.degruyter.com/document/doi/10.1515/ntrev-2021-0049/html?lang=en
- Rakshit, Jayanta Kumar, and Jitendra Nath Roy. "All-optical ultrafast switching in a silicon microring resonator and its application to design multiplexer/demultiplexer, adder/subtractor and comparator circuit." Optica Applicata 46, no. 4 (2016): 517-539. https://opticaapplicata.pwr.edu.pl/files/pdf/2016/no4/optappl_4604p517.pdf
- MATEEN, ABDUL, IHSAN UL HAQa, MUHAMMAD SAJJAD, and TAUSEEF AHMED. "OPTOELECTRONICS AND ADVANCED MATERIALS–RAPID COMMUNICATIONS Synthesis and characterization of MWCNTs reinforced cuprous oxide nanocomposite." https://www.researchgate.net/publication/339059342_OPTOELECTRONICS_AND_ADVANCED_MATERIALS_-RAPID_COMMUNICATIONS_Synthesis_and_characterization_of_MWCNTs_reinforced_cuprous_oxide_nanocomposite
- Chen, Jing, Farhad Mehdizadeh, Mohammad Soroosh, and Hamed Alipour-Banaei. "A proposal for 5-bit all optical analog to digital converter using nonlinear photonic crystal based ring resonators." Optical and Quantum Electronics 53, no. 9 (2021): 510. https://link.springer.com/article/10.1007/s11082-021-03166-6
- Noori, Mina, Mohammad Soroosh, and Hamed Baghban. "All-angle self-collimation in two-dimensional square array photonic crystals based on index contrast tailoring." Optical Engineering 54, no. 3 (2015): 037111-037111. https://spie.org/publications/journal/10.1117/1.OE.54.3.037111#_=_
- Zhang, Wei, Changchun Chai, Qingyang Fan, Yanxing Song, and Yintang Yang. "Metallic and semiconducting carbon allotropes comprising of pentalene skeletons." Diamond and Related Materials 109 (2020): 108063. https://www.sciencedirect.com/science/article/abs/pii/S0925963520306166#:~:text=A%20series%20of%203D%20carbon,than%20many%20previously%20reported%20allotropes.
- Farmani, Ali, Ali Mir, and Zhaleh Sharifpour. "Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hänchen effect." Applied Surface Science 453 (2018): 358-364. https://www.sciencedirect.com/science/article/abs/pii/S0169433218313928
- Farmani, Ali, Mehdi Miri, and Mohammad H. Sheikhi. "Tunable resonant Goos–Hänchen and Imbert–Fedorov shifts in total reflection of terahertz beams from graphene plasmonic metasurfaces." JOSA B 34, no. 6 (2017): 1097-1106. https://opg.optica.org/josab/abstract.cfm?uri=josab-34-6-1097
- Moradiani, Fatemeh, Ali Farmani, Mahdi Yavarian, Ali Mir, and Fatemeh Behzadfar. "A multimode graphene plasmonic perfect absorber at terahertz frequencies." Physica E: Low-dimensional Systems and Nanostructures 122 (2020): 114159. https://www.sciencedirect.com/science/article/abs/pii/S1386947720305269
- Ponnusamy, Muruganantham, K. C. Ramya, V. Sivasankaran, Homa Farmani, and Ali Farmani. "Emerging advanced photonics applications of graphene and beyond-graphene 2D materials: Recent advances." Journal of Materials Research (2022): 1-14. https://link.springer.com/article/10.1557/s43578-021-00447-4
- Omidniaee, Anis, Salman Karimi, and Ali Farmani. "Surface plasmon resonance-based siO 2 Kretschmann configuration biosensor for the detection of blood glucose." Silicon (2021): 1-10. https://link.springer.com/article/10.1007/s12633-021-01081-9
- Rezaei, Mir Hamid, Rahim Boroumandi, Abbas Zarifkar, and Ali Farmani. "Nano‐scale multifunctional logic gate based on graphene/hexagonal boron nitride plasmonic waveguides." IET Optoelectronics 14, no. 1 (2020): 37-43. https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-opt.2019.0054
- Jooq, Mohammad Khaleqi Qaleh, Ali Mir, Satar Mirzakuchaki, and Ali Farmani. "Semi-analytical modeling of high performance nano-scale complementary logic gates utilizing ballistic carbon nanotube transistors." Physica E: Low-dimensional Systems and Nanostructures 104 (2018): 286-296. https://www.sciencedirect.com/science/article/abs/pii/S1386947718308683
- Farmani, Ali, Mahmoud Farhang, and Mohammad H. Sheikhi. "High performance polarization-independent quantum dot semiconductor optical amplifier with 22 dB fiber to fiber gain using mode propagation tuning without additional polarization controller." Optics & Laser Technology 93 (2017): 127-132. https://www.sciencedirect.com/science/article/abs/pii/S0030399216306363
- Khani, Shiva, Ali Farmani, and Ali Mir. "Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method." Scientific Reports 11, no. 1 (2021): 13628. https://www.nature.com/articles/s41598-021-93167-y
- Krishnamoorthy, R., I. D. Soubache, and Ali Farmani. "Exploring surface plasmon resonance ring resonator structure for high sensitivity and ultra-high-Q optical filter with FDTD method." Optical and Quantum Electronics 54 (2022): 1-13. https://link.springer.com/article/10.1007/s11082-021-03449-y
- Salehnezhad, Zohre, Mohammad Soroosh, and Ali Farmani. "Design and numerical simulation of a sensitive plasmonic-based nanosensor utilizing MoS2 monolayer and graphene." Diamond and Related Materials 131 (2023): 109594. https://www.sciencedirect.com/science/article/abs/pii/S0925963522007762
- Zangeneh, Amir Mohammad Rezaei, Ali Farmani, Mohammad Hazhir Mozaffari, and Ali Mir. "Enhanced sensing of terahertz surface plasmon polaritons in graphene/J-aggregate coupler using FDTD method." Diamond and Related Materials 125 (2022): 109005. https://www.sciencedirect.com/science/article/abs/pii/S092596352200187X
- Farmani, Ali, Mohammad Soroosh, Mohammad Hazhir Mozaffari, and Tina Daghooghi. "Optical nanosensors for cancer and virus detections." In Nanosensors for smart cities, pp. 419-432. Elsevier, 2020. https://www.sciencedirect.com/science/article/abs/pii/B9780128198704000244
- Khosravian, Elham, Hamid Reza Mashayekhi, and Ali Farmani. "Highly polarization-sensitive, broadband, low dark current, high responsivity graphene-based photodetector utilizing a metal nano-grating at telecommunication wavelengths." JOSA B 38, no. 4 (2021): 1192-1199. https://opg.optica.org/josab/abstract.cfm?uri=josab-38-4-1192
- Farmani, Ali. "Graphene plasmonic: Switching applications." Handbook of graphene: physics, chemistry, and biology (2019): 455. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119468455.ch33
- Yari, Parsa, Homa Farmani, and Ali Farmani. "Steering of guided light with graphene metasurface for refractive index sensing with high figure of merits." Plasmonics 17, no. 1 (2022): 305-314. https://link.springer.com/article/10.1007/s11468-021-01519-1
- Farhadi, Shahriar, Mehdi Miri, and Ali Farmani. "Plasmon-induced transparency sensor for detection of minuscule refractive index changes in ultra-low index materials." Scientific Reports 11, no. 1 (2021): 21692. https://www.nature.com/articles/s41598-021-01246-x
- Azizi, Bahram, Mohammad Amir Ghasemi Shabankareh, and Ali Farmani. "Simulation of a refractive index sensor based on the Vernier effect and a cascaded PANDA and Mach–Zehnder interferometer." Journal of Computational Electronics 20, no. 4 (2021): 1599-1610. https://link.springer.com/article/10.1007/s10825-021-01726-3
- Mokri, Khalil, Mohammad Hazhir Mozaffari, and Ali Farmani. "Polarization-dependent plasmonic nano-tweezer as a platform for on-chip trapping and manipulation of virus-like particles." IEEE Transactions on NanoBioscience 21, no. 2 (2021): 226-231. https://pubmed.ncbi.nlm.nih.gov/34665735/
- Soroosh, Mohammad, Atefeh Mirali, and Ebrahim Farshidi. "Ultra-fast all-optical half subtractor based on photonic crystal ring resonators." Journal of Optoelectronical Nanostructures 5, no. 1 (2020): 83-100. https://jopn.marvdasht.iau.ir/article_4035.html
- Farmani, Ali, Mohammad Soroosh, Mohammad Hazhir Mozaffari, and Tina Daghooghi. "Optical nanosensors for cancer and virus detections." In Nanosensors for smart cities, pp. 419-432. Elsevier, 2020. https://www.sciencedirect.com/science/article/abs/pii/B9780128198704000244
- Mansuri, M., Mir, A. and Farmani, A., 2019. Numerical modeling of a nanostructure gas sensor based on plasmonic effect. Journal of Optoelectronical Nanostructures, 4(2), pp.29-44. https://journals.marvdasht.iau.ir/article_3476_087a7e56aefeafb4744d557b38f01339.pdf
|