- Guan, et al. High-Sensitivity Terahertz Biosensor Based on Plasmon-Induced Transparency Metamaterials. in Photonics. (2023) MDPI. available online: https://www.mdpi.com/2304-6732/10/11/1258
- D-K. Lee, et al., Nano metamaterials for ultrasensitive Terahertz biosensing. Scientific reports, (2017). 7(1): p. 8146. available online. https://www.nature.com/articles/s41598-017-08508-7
- Cai, and V.M. Shalaev, Optical metamaterials. Vol. 10. (2010 Springer. available online:https://pubs.aip.org/physicstoday/article/63/9/57/386596/Optical-Metamaterials-Fundamentals
- Parvinnezhad Hokmabadi, et al., Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators. Scientific reports, (2015) 5(1): p. 15735. available online:https://www.nature.com/articles/srep15735
- Amin, O. Siddiqui, and M. Farhat, Linear and circular dichroism in graphene-based reflectors for polarization control. Physical Review Applied, (2020) 13(2): p. 024046. available online:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.13.024046
- R. Forouzeshfard, and M.H. Farzad, Electromagnetic wave propagation through two coaxial transformation-based cylindrical media. Plasmonics, (2015) 10: p. 1345-1357. available online:https://link.springer.com/article/10.1007/s11468-015-9935-0
- Moghbeli, H. Askari, and M. Forouzeshfard, Analyzing the effect of geometric parameters of double split ring resonator on the effective permeability and designing a cloak of invisibility in microwave regime. Applied Physics A, (2018) 124(5): p. 361. available online:https://link.springer.com/article/10.1007/s00339-018-1774-3
- Niu, R. Zhang, and Y. Yang, High sensitivity and label-free detection of the SARS-CoV-2 S1 protein using a terahertz meta-biosensor. Frontiers in Physics, (2022) 10: p. 859924. available online:https://www.frontiersin.org/articles/10.3389/fphy.2022.859924/full
- R. Forouzeshfard, S. Ghafari, and Z. Vafapour, Solute concentration sensing in two aqueous solution using an optical metamaterial sensor. Journal of Luminescence, (2021) 230: p. 117734. available online:https://www.sciencedirect.com/science/article/abs/pii/S0022231320317014
- Keshavarz, and Z. Vafapour, Sensing avian influenza viruses using terahertz metamaterial reflector. IEEE Sensors Journal,( 2019) 19(13): p. 5161-5166. available online: https://ieeexplore.ieee.org/abstract/document/8663385
- Park, et al., Sensing viruses using terahertz nano-gap metamaterials. Biomedical optics express, (2017) 8(8): p. 3551-3558. available online:https://opg.optica.org/boe/fulltext.cfm?uri=boe-8-8-3551&id=369089
- Amin, et al., A THz graphene metasurface for polarization selective virus sensing. Carbon, (2021) 176: p. 580-591. available online:https://www.sciencedirect.com/science/article/abs/pii/S0008622321002311
- Bi, M. Yang, and R. You, Advances in terahertz metasurface graphene for biosensing and application. Discover Nano, (2023) 18(1): p. 63. available online:https://link.springer.com/article/10.1186/s11671-023-03814-8
- Liu, et al., Coupled magnetic plasmons in metamaterials. physica status solidi (b), (2009) 246(7): p. 1397-1406. available online:https://onlinelibrary.wiley.com/doi/abs/10.1002/pssb.200844414
- Liu, S. Kaiser, and H. Giessen, Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Advanced Materials, (2008) 20(23): p. 4521-4525. available online:https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.200801917
- Fleischhauer, A. Imamoglu, and J.P. Marangos, Electromagnetically induced transparency: Optics in coherent media. Reviews of modern physics, (2005) 77(2): p. 633. available online: https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.77.633
- Alzar, M. Martinez, and P. Nussenzveig, Classical analog of electromagnetically induced transparency. arXiv preprint quant-ph/0107061, (2001). available online: https://pubs.aip.org/aapt/ajp/article abstract/70/1/37/1040315 / Classical-analog-of-electromagnetically- induced?redirectedFrom =fulltext
- É. Lheurette, Classical Analog of Electromagnetically Induced Transparency. Metamaterials and Wave Control, (2013) p. 195-214. available online:https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118762080.ch8
- E. Harris, Electromagnetically induced transparency. Physics today, (1997) 50(7): p. 36-42. available online: https://pubs.aip.org/physicstoday/article abstract/50/7/36/409812/Electromagnetically-Induced-TransparencyOne-can
- Servatkhah, and H. Alaei, The Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials. Journal of Optoelectronical Nanostructures, (2016). 1(2): p. 31-38. available online: https://jopn.marvdasht.iau.ir/article_2046.html
- Taghipour, , G. Rezaei, and A. Gharaati, Electromagnetically induced transparency in a spherical Gaussian quantum dot. The European Physical Journal B, (2022) 95(9): p. 141. available online:https://link.springer.com/article/10.1140/epjb/s10051-022-00409-7
- Ghafari, M.R. Forouzeshfard, and Z. Vafapour, Thermo optical switching and sensing applications of an infrared metamaterial. IEEE Sensors Journal, (2019) 20(6): p. 3235-3241. available online:https://ieeexplore.ieee.org/abstract/document/8911485
- R. Nickpay, M. Danaie, and A. Shahzadi, Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics, (2021) p. 1-12. available online:https://link.springer.com/article/10.1007/s11468-021-01512-8
- A. Maier, Plasmonics: fundamentals and applications. Vol. 1. (2007) Springer. available online:https://link.springer.com/book/10.1007/0-387-37825-1
- Zhang, S., et al., Plasmon-induced transparency in metamaterials. Physical review letters, (2008) 101(4): p. 047401. available online:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.101.047401
- Yi, , et al., Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application. Micromachines, (2019) 10(7): p. 443. available online: https://www.mdpi.com/2072-666X/10/7/443
- Khani, and M. Hayati, Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. Scientific reports, (2022) 12(1): p. 5246. available online:https://www.nature.com/articles/s41598-022-09213-w
- Momeni, , M. Javadian Sarraf, and F. Khatib, Design of high sensitivity and high FoM refractive index biosensor based on 2D-photonic crystal. Journal of Optoelectronical Nanostructures,( 2021). 6(4): p. 33-58. available online:https://jopn.marvdasht.iau.ir/article_5040.html
- S.Z. Hosseini, A. Keshavarz, and A. Gharaati, The effect of temperature on optical absorption cross section of bimetallic core-shell nano particles (2016). available online: https://www.sid.ir/paper/349307/en
- Vafapour, E.S. Lari, and M.R. Forouzeshfard, Breast cancer detection capability of a tunable perfect semiconductor absorber: Analytical and numerical evaluation. Optical Engineering, (2021). 60(10): p. 107101-107101. available online:https://www.spiedigitallibrary.org/journals/optical-engineering /volume-60/issue-10/107101/Breast-cancer-detection-capability-of-a-tunable-perfect-semiconductor-absorber/10.1117/1.OE.60.10.107101.short
- Keshavarz, and Z. Vafapour, Water-based terahertz metamaterial for skin cancer detection application. IEEE Sensors Journal, (2018) 19(4): p. 1519-1524. available online: https://ieeexplore.ieee.org/abstract/document/8540886
- Li, , et al., Identification of early-stage cervical cancer tissue using metamaterial terahertz biosensor with two resonant absorption frequencies. IEEE Journal of Selected Topics in Quantum Electronics, (2021) 27(4): p. 1-7. available online: https://ieeexplore.ieee.org/abstract/document/9353192
- Wahaia, , et al., Detection of colon cancer by terahertz techniques. Journal of Molecular Structure, (2011) 1006(1-3): p. 77-82. available online:https://www.sciencedirect.com/science/article/abs/pii/S0022286011004376
- Farmani, A. Mir, and H. Emami Nejad, Numerical modeling of a metamaterial biosensor for cancer tissues detection. Journal of Optoelectronical Nanostructures, (2020) 5(1): p. 1-18. available online: https://jopn.marvdasht.iau.ir/article_4030_526.html
- Fouladi, A. Farmani, and A. Mir, Research Paper Rigorous Investigation of Ring Resonator Nanostructure for Biosensors applications in breast cancer detection. Journal of Optoelectronical Nanostructures, (2023) 8(4): p. 97-119. available online:https://jopn.marvdasht.iau.ir/article_6216_2941950397c94b88c91f81f6cee85910.pdf
- Hamouleh-Alipour, et al., Blood hemoglobin concentration sensing by optical nano biosensor-based plasmonic metasurface: a feasibility study. IEEE Transactions on Nanotechnology ( 2022) 21: p. 620-628. available online:https://ieeexplore.ieee.org/abstract/document/9916145
|