- Balkanski, Devices Based on Low-Dimensional Semiconductor Structures, Springer, Netherlands, 2011. Available: https://link.springer.com/book/10.1007/978-94-009-0289-3
- Barnham, D. Vvedensky, Low dimensional semiconductor structures: Fundamentals and device applications, New York: Cambridge University Press, 2008. Available: https://www.cambridge.org/core/books/lowdimensional-semiconductor-structures/68178E0CCC55CDB88473DA460D629D01
- Cao, Y. Wang, Nanostructures and Nanomaterials, Synthesis, Properties, and Applications, London: World Scientific 2004. Available: https://www.worldscientific.com/worldscibooks/10.1142/7885#t=aboutBook
- C. Yi, Semiconductor Nanostructures for Optoelectronic Devices; Processing, Characterization and Applications, Berlin: Springer, 2012. Available: https://link.springer.com/book/10.1007/978-3-642-22480-5
- B. Yu, S.N. Zhu, K.X. Guo, Electron-phonon interaction effect on optical absorption in cylindrical quantum wires, Solid State Commun. 139(2) (2006) 76-79. Available: https://www.sciencedirect.com/science/article/abs/pii/S003810980600319X
- Betancourt-Riera, J.N. Jalil, R. Riera, R. Betancourt-Riera, R. Rosas, Electron Raman scattering in semiconductor quantum wire in an external magnetic field, J. Phys: Condensed Matter. 20(4) (2008) 045203. Available: https://www.semanticscholar.org/paper/Electron-Raman-scattering-in-semiconductor-quantum-Betancourt-Riera-Jalil/6ea285de0ded2a0b3b1df6ae5befc998d5e6b619
- M. Krishna, S. Mukhopadhyay, A. Chatterjee, Polaronic effects in asymmetric quantum wire: An all-coupling variational approach, Solid State Commun. 138(6) (2006) 285-289. Available: https://www.sciencedirect.com/science/article/abs/pii/S0038109806002237.
- Servatkhah, P. Hashemi, R. Pourmand. Binding energy in tuned quantum dots under an external magnetic field. JOPN, 7(4) (2022) 49-65. Available: https://jopn.marvdasht.iau.ir/article_5677.html.
- Kumar, S. Lahon, P.K. Jha, M. Mohan, Energy dispersion and electron g-factor of quantum wire in external electric and magnetic fields with Rashba spin orbit interaction, Superlatt. Microstruct. 57 (2013) 11-18. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603613000207.
- Rahimi, T. Ghaffary, Y. Naimi, H. Khajehazad, Study the energy states and absorption coefficients of quantum dots and quantum anti-dots with hydrogenic impurity under the applied magnetic field. JOPN, 7(1) (2022) 1-18.Available: https://jopn.marvdasht.iau.ir/article_5091_2c1e251baf8c1e39d880c41f089f0ba5.pdf
- Karaaslan, B. Gisi, S. Sakiroglu, E. Kasapoglu, H. Sari, I. Sokmen, Rashba spin-orbit coupling effects on the optical properties of double quantum wire under magnetic field, Superlatt. Microstruct. 93 (2016) 32-39. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603616300866
- Studer, G. Salis, K. Ensslin, D.C. Driscoll, A.C. Gossard, Gate-controlled spin-orbit interaction in a parabolic GaAs/AlGaAs quantum well, Phys. Rev. Lett. 103 (2009) 027201. Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.027201
- V. Zaitsev-Zotov, Y.A. Kumzerov, Y.A. Firsov, P. Monceau, Luttinger-liquid-like transport in long InSb nanowires, J. Phys.: Condens. Matter 12(20) (2000) L303. Available: https://iopscience.iop.org/article/10.1088/0953-8984/12/20/101
- C. Phong, H. V. Phuc, Nonlinear absorption line-widths in rectangular quantum wires, Mod. Phys. Lett. B 25(12-13) (2011) 1003-1011. Available: https://www.worldscientific.com/doi/10.1142/S0217984911026723
- Debald, B. Kramer, Rashba effect and magnetic field in semiconductor quantum wires, Phys. Rev. B 71(11) (2005) 115322. Available: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.115322
- Frolov, S. Plissard, S. Nadj-Perge, L. Kouwenhoven, E. Bakkers, Quantum computing based on semiconductor nanowires. MRS Bulletin, 38(10)(2013) 809-815. Available: https://www.cambridge.org/core/journals/mrs-bulletin/article/abs/quantum-computing-based-on-semiconductor- nanowires/028CDAA26012CE0F93BA1BB569559DD3
- Henini, Henini, Handbook of self assembled semiconductor nanostructures for novel devices in photonics and electronics, Amsterdam: Elsevier 2008. Available: https://www.sciencedirect.com/book/9780080463254/handbook-of-self-assembled-semiconductor-nanostructures-for-novel-devices-in-photonics-and-electronics
- M. Hashimzade, T.G. Ismailov, B.H. Mehdiyev, Influence of external transverse electric and magnetic fields on the absorption of a parabolic quantum wire, Physica E 7(1-2) (2005) 140-150. Available: https://www.sciencedirect.com/science/article/abs/pii/S1386947704005557
- G. Barseghyan, A.K. Manaselyan, A.A. Kirakosyan, Intersubband absorption in quantum wire with a convex bottom in a magnetic field, J. Phys.: Condensed Matter 18 (33) (2006) S2161. Available: https://iopscience.iop.org/article/10.1088/0953-8984/18/33/S31/pdf
- Jiang and J. Sun, External electric field effect on the hydrogenic donor impurity in zinc-blende GaN/AlGaN cylindrical quantum well wire, Mod. Phys. Lett. B 24(23) (2010) 2413-2421. Available: https://www.worldscientific.com/doi/abs/10.1142/S0217984910024808?journalCode=mplb
- Liu and Y. Yu, The electronic states and the optical absorption for an asymmetrical quantum well applied with an external electric field, Int. J. Mod. Phys. B 33 (26) (2019) 1950301 (9 pages). Available: https://www.worldscientific.com/doi/abs/10.1142/S0217979219503016?journalCode=ijmpb
- Ghadimi, M. Ahmadzadeh. Effect of variation of specifications of quantum well and contact length on performance of InP-based Vertical Cavity Surface Emitting Laser (VCSEL), JOPN, 5(1) (2020) 19-34. Available: https://jopn.marvdasht.iau.ir/article_4031.html
- Rezaei, M.J. Karimi, H. Pakarzadeh, Magnetic field effects on the electron Raman scattering in coaxial cylindrical quantum well wires, J. Lumin. 143 (2013), 551-557. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231313003207
- Sugaya, K.Y. Jang, C.K. Hahn, M. Ogura, K. Komori, A. Shinoda, K. Yonei, Enhanced peak-to-valley current ratio in InGaAs/InAlAs trench-type quantum-wire negative differential resistance field-effect transistors, J. Appl. Phys. 97(3) (2005) 034507. Available: https://pubs.aip.org/aip/jap/article-abstract/97/3/034507/471026/Enhanced-peak-to-valley-current-ratio-in-InGaAs?redirectedFrom=fulltext
- Amirhoseiny, G. Alahyarizadeh. Enhancement of deep violet InGaN double quantum wells laser diodes performance characteristics using superlattice last quantum barrier, JOPN, 6(2) (2021) 107-120. Available: https://jopn.marvdasht.iau.ir/article_4776.html
- Fu, G. Zhou, Spin current induced electric field in a Rashba quantum wire, Mod. Phys. Lett. B 24(07) (2010) 649-656. Available: https://www.worldscientific.com/doi/abs/10.1142/S0217984910022718
- Bahramiyan, R. Khordad and H. Azari, Electron-phonon interaction influence on optical properties of parallelogram quantum wires, Int. J. Mod. Phys. B 28 (22) (2014) 1450142 (12 pages). Available: https://www.worldscientific.com/doi/abs/10.1142/S0217979214501422?journalCode=ijmpb
- Sadeghi, Linear and nonlinear optical absorption coefficients in an asymmetric graded ridge quantum wire, Superlatt. Microstruct. 49(1) (2011) 91-98. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603610002314
- Arunachalam, A.J. Peter, C.K.Yoo, Exciton optical absorption coefficients and refractive index changes in a strained InAs/GaAs quantum wire: The effect of the magnetic field, J. Lumin. 132(6)(2012) 1311-1317. Available: https://www.sciencedirect.com/science/article/abs/pii/S0022231312000051
- V. Phuc, T.C.Phong, Calculation of the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in quantum wires, Comput. Mater. Sci. 49(4) (2010) S260-S262. Available: https://www.sciencedirect.com/science/article/abs/pii/S0927025610001126
- González-Santander, F. DomÃnguez-Adame, Exciton states and optical absorption in quantum wires under laser radiation, Phys. Lett. A 374(22) (2010) 2259-2261. Available: https://www.sciencedirect.com/science/article/abs/pii/S0375960110003269
- R. Sakr, Direction dependence of the magneto-optical absorption in nanowires with Rashba interaction, Phys. Lett. A 380(39) (2016) 3206-3211. Available: https://www.sciencedirect.com/science/article/abs/pii/S0375960116304406
- Khordad, H. Bahramiyan, Effects of electron-phonon interaction and impurity on optical properties of hexagonal-shaped quantum wires, Pramana 88(3) (2017) 50. Available: https://link.springer.com/article/10.1007/s12043-016-1348-x
- J. Karimi, M. Hosseini, Electric and magnetic field effects on the optical absorption of elliptical quantum wire, Superlatt. Microstruct. 111 (2017) 96-102. Available: https://www.sciencedirect.com/science/article/abs/pii/S0749603617311436#:~:text=The%20exciton%20effect%20in%20MQWs,under%20a%20strong%20electric%20field.
- Harrison, A. Valavanis, Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures, Chichester: (John Wiley and Sons, 2016. Available: https://onlinelibrary.wiley.com/doi/book/10.1002/0470010827
- Ashrafi-Dalkhani, S. Ghajarpour-Nobandegani, M.J. Karimi, Effects of spin-orbit interactions, external fields and eccentricity on the optical absorption of an elliptical quantum ring, Eur. Phys. J. B 92(1) (2019) 1-6. Available: https://link.springer.com/article/10.1140/epjb/e2018-90691-5#:~:text=Results%20indicate%20that%20the%20spin,higher%20energies%20with%20increasing%20eccentricity.
- C. Niculescu, C. Stan, D. Bejan, C. Cartoaje, Impurity and eccentricity effects on the nonlinear optical rectification in a quantum ring under lateral electric fields, J. Appl. Phys. 122(14) (2017) 144301. Available: https://pubs.aip.org/aip/jap/article-abstract/122/14/144301/144905/Impurity-and-eccentricity-effects-on-the-nonlinear
- Ghajarpour-Nobandegani, M.J. Karimi, Effects of hydrogenic impurity and external fields on the optical absorption in a ring-shaped elliptical quantum dot, Opt. Mater. 82 (2018) 75-80. Available: https://www.sciencedirect.com/science/article/abs/pii/S0925346718303173
- Ghajarpour-Nobandegani, V. Ashrafi-Dalkhaniy, M. J. Karimi, Effects of external fields on the optical absorption of quantum multirings, Int. J. Mod. Phys. B 34 (17) (2020) 2050153 (9 pages). Available: https://www.worldscientific.com/doi/abs/10.1142/S0217979220501532.
|